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By Melissa J. Joliat 

Thesis Advisor: Dr. Leonard D. Shultz 

An Abstract of the Thesis Presented 
in Partial Fulfillment of the Requirements for the 
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One of a large number of mutant mice used in immunological research, the 

"motheaten" mouse was the first model of a specific protein tyrosine phosphatase 

deficiency. Mice carrying one of two allelic mutations at the "motheaten" locus have 

severe systemic autoimmunity and immune dysfunction as a result of mutations in the 

hematopoietic-cell phosphatase (Hcph) gene, which encodes the protein tyrosine 

phosphatase SHP-1. Studies using "motheaten" (me/me) and "viable motheaten" 

(mev/mev) mice have increased the understanding of numerous signaling pathways in 

immune and hematopoietic cells. A number of studies on SHP-1 function in normal and 

pathologic states are described here. 

Homozygous mev/mev mice have an increased percentage of autoantibody 

associated B-1 B-cells that express the cell surface glycoprotein CD5. To investigate the 

hypothesis that absence of CD5 in mev/mev mice will result in decreased systemic 

autoimmunity, we created a stock of ~~5""me'/rne' mice. These mice have a longer 

lifespan than mev/mev mice, associated with reduced pulmonary inflammatory disease, 
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splenic macrophage numbers, and serum IgM levels. However, autoantibodies against 

dsDNA and histone proteins were not significantly reduced. These studies suggest that 

CD5 expression is not required for autoantibody production, but otherwise indicate a role 

for CD5 in the development of irnrnunopathologic lesions in mev/mev mice. 

Dysregulated macrophage populations in mev/mev mice presumably have 

secondary effects on other cell types. To examine these effects, as well as the primary 

results of SHP-1 deficiency in macrophages, we developed a stock of mice transgenic for 

a dominant-negative form of SHP-1, under control of a macrophage specific promoter. 

The catalytically inactive dominant-negative protein should occupy SH2 binding sites, 

blocking the recruitment of functional wild-type SHP-1. 

SHP- 1 plays a putative role in oncogenesis. To substantiate this role, we have 

monitored tumor development in aged +/me and +/mev mice. Preliminary studies do not 

support the hypothesis that a spontaneous chondroblastic osteosarcoma that occurred in 

an aging +/mev mouse was caused by loss of SHP- 1 expression. Nonetheless, we 

describe the transplantable cell-line derived from this tumor, which mimics the process of 

endochondral ossification in vivo and is a potentially valuable model for studies of 

osteosarcoma and bone biology. 
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Chapter 1 

THE MOLECULAR BASES OF SPONTANEOUS IMMUNOLOGICAL 

MUTATIONS IN THE MOUSE AND THEIR HOMOLOGOUS HUMAN 

DISEASES ' 

Introduction 

Spontaneous genetic mutations that disrupt development or regulation of the 

immune system in inbred mouse strains provide unique models for the study of immune 

deficiency and autoimmune diseases of humans. While these mouse mutations have been 

widely utilized to increase our understanding of the immune system in normal and 

pathological states, recent determination of the molecular bases of many of these 

mutations has provided even deeper insight into the underlying biology and biochemistry 

of the mammalian immune system. A number of the mouse genes disrupted by 

spontaneous mutation have human homologues, and mutations in many of the human 

genes result in immunological diseases. In these cases, immunological mutations in mice 

provide an especially valuable resource to study mechanisms of disease and to investigate 

experimental interventions that may lead to treatments for the human disease. 

In recent years, advances in transgenic and gene targeting technology have 

allowed generation of mice with genetic alterations specifically targeted to selected genes 

or regions of genes, allowing focused analysis of their products and functions. While 

these technologies have become powerful tools for scientific research, they commonly 

rely on identification and cloning of a gene prior to creating a targeted mutation of that 
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gene. While targeted mutation of a specific gene often results in an imperceptible or 

unexpected phenotype, spontaneous mutants are selected by discemable phenotypes of 

interest. Investigation into the genetic basis of many of these spontaneous mutations has 

led to the identification of previously unknown, novel genes. 

The intent of this review is not to provide exhaustive detail about the phenotypes 

of mutant mice. The phenotypes of many of these mutants have been reviewed 

previously (I), and references to available reviews specific to each mutant will be 

provided. This review has been written as an overview of spontaneous mouse mutations 

resulting in immunodeficient or autoimmune phenotypes that have been defined at the 

molecular level (summarized in Table 1.1). Human diseases with homology to these 

mouse mutations are discussed, and the uses of these mice in research on human disease 

and immunobiological function are also discussed (summarized in Table 1.2). 

Genetic nomenclature can be complex. Gene symbols are changed as loci are 

identified at the molecular level and gene families are determined. The current approved 

symbol for each mouse gene is provided in the heading for the individual mutations, as 

well as in Table 1.1. The symbol for the homologous human gene is provided in Table 

1.2, and is included in the text. General background of nomenclature changes is provided 

in the text, and the most commonly known name for each gene and mutation is used in 

subsequent discussion. 

Based on: Joliat MJ, Shultz LD. 2001. The molecular bases of spontaneous immunological mutations in 
the mouse and their homologous human diseases. (Review) Clin. Immunol. lOl(3): 1 13-129. 
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Table 1.1. The molecular bases of spontaneous immunological mutations in the mouse. 

Allele Name 
(Original Symbol) 

severe combined 
immunodeficiency 
(scid) 

Gene 
Symbol 
Prkdc 

Gene Name Mouse 
Chr 
16 

Phenotype 

DNA activated 
protein kinase, 
catalytic subunit 

forkhead box nl 

(forkheadwinged 
helix family of 
transcription factors) 

Severe immune deficiency 

caused by absence of both B and 
T cells, radiosensitivity 

Hairless, athymic, T-cell 
deficiency 

nude (nu) Foxnl 

scurfy (sj) forkhead box P3 
(forkheadwinged 

helix family of 
transcription factors) 

Thrombocytopenia, increased 

numbers of CD4+/CD8- T 
lymphocytes, extensive multi- 
organ infiltration, and elevation 
of numerous cytokines 

Severe immune deficiency, 
autoimmunity, x-ray resistance 

motheaten (me), Hcph hematopoietic cell 
phosphatase 

lymphoproliferation 

(lpr) 

tumor necrosis family 

receptor superfamily, 

member 6 

tumor necrosis factor 

superfamily, member 
6 

Lymphadenopathy, 
autoimmunity 

generalized 

lymphoproliferative 
disease (gld) 

Lymphadenopathy. 

autoimmunity 

dominant spotting 

(w) 

Kit kit oncogene (stem 
cell factor receptor) 

Defects in pigment forming cells, 
RBC's, mast cells and progenitor 
cells, impaired resistance to 

parasitic infection 

Severe macrocytic anemia, mast 
cell deficiency 

steel (sl) kit ligand (stem cell 

factor) 

X-linked 
immunodeficiency 

(xi4 

Btk Bruton's 
agammaglobulinemia 
tyrosine kinase 

Defective immune response to 

type 11 thymus-independent (TI- 
11) antigens, impaired immune 

response to some thymus- 
dependent (TD) antigens, and 
impaired lymphocyte response to 

B-cell mitogens 

alymphoplasia (aly) mitogen-activated 
protein kinase kinase 
kinase 14 

Absence of lymph nodes and 
Peyer's patches 
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Allele Name Gene 
Symbol 
Lyst 

Gene Name Mouse 
Chr 
13 

Phenotype 

lysosomal trafficking Abnormal giant lysosomal 
granules in granule containing 
cells, defective granulocyte 
activity, NK cell deficiency, 
platelet storage pool deficiency 

regulator 

osteopetrosis (op) colony stimulating 
factor 1 
(macrophage) 

Osteoclast defects, macrophage 
deficiency, monocytopenia, 
defective bone remodeling 

defective 
lipopolysaccharide 
response (48) 

toll-like receptor 4 Defective response to bacterial 
endotoxin. Increased 
susceptibility to Gram-negative 
infection. 

microphthalmia (mi) microphthalmia 
associated 
transcription factor 

Developmental defects in 
melanocytes, osteoclasts and 
mast cells 

wasted (wst) eukaryotic translation 
elongation factor 1 
alpha 2 

Tremor, progressive paralysis, 
lymphoid hypoplasia, death by 
30 days of age 

hairless (hr) hairless High incidence of early onset 
leukemia, low cellular immune 
response, deficiency of splenic 
TH cells. 
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Table 1.2. Human homologous diseases and uses of mouse models in the study of human 
disease and irnrnunologica~function. 

Mouse Mutation 

severe combined 
immunodeficiency 

nude 

scurfy 

motheaten 

lymphoproliferation 

generalized 

lymphoproliferative 
disease 

dominant spotting 

steel 

X-linked 

immunodeficiency 

Human 
Gene 

BTK 

( C h  X )  

Human Disease Homologues and Uses in Research on Human 
Diseases 

Mutations in the human PRKDC gene have not been found associated 
with human SCID or any other disease. However, scid mice are 

widely used as hosts for normal and malignant human cells. They are 
also used as a model to study combined immune deficiency in 
humans and as a tool to decipher the normal biological role of DNA- 
PK. 

A mutation in this gene has been found in a family in Italy resulting 

in immune deficiency with absence of thymus and hair (OMIM 
601705). These mice also serve as hosts for human solid tumors. 

Mutations in FOXP3 are associated with the X-linked syndrome of 
immunodysregulation, polyendocrinopathy and enteropathy (IF'EX) 

(OMIM 304930). May be used to study autoimmune disease 
development and molecular mechanisms involved in T cell 
regulation. 

No diseases are known to result from heritable mutations in PTPN6. 
Somatic mutations in this gene and defective gene expression have 

been associated with myeloid leukemia, T-cell lymphoma, 
polycythemia Vera and breast cancers. Motheaten mice are also used 
to study the normal function of the SHP-1 phosphatase in the immune 

system. 

Mutations in TNFRSF6 and TNFSF6 are associated with autoimmune 

lymphoproliferative syndrome 1 A (ALPS 1 A-also called Canale- 
Smith syndrome) and ALPSIB, respectively (OMIM 601859). 
Spontaneous somatic mutations in TNFRSF6 have been found in 

cases of T-cell leukemia, multiple myeloma and non-Hodgkin's 
lymphoma. Study of these mice can also provide insights into the 
death receptor mediated system and its role in human disease. 

Germ line mutations in KIT have been found to cause human 
piebaldism (OMIM 172800). Somatic mutations, many of which 
cause constitutive activation of KIT, have been associated with mast 

cell neoplasia, cutaneous mastocytosis and tumors of the 
gastrointestinal stroma in humans. 

Bruton's X-linked agamrnaglobulinemia (XLA) (OMIM 300300) is 
caused by a variety of mutations in BTK. Mice with the xid mutation 
are also valuable tools for investigation of B cell-lineage development 
and signaling. 
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Mouse Mutation Human 
Gene 

Human Disease Homologues and Uses in Research on Human 
Diseases 

alymphoplasia 

beige 

osteopetrosis 

defective 
lipopolysaccharide 
response 

microphthalmia 

wasted 

hairless 

There are no known human diseases caused by mutations in 
MAP3K14. Mice homozygous for the aly mutation are valuable tools 
in the study of inflammatory processes involving NF-K-B induction. 

The bg mouse is the homologue of human Chediak-Higashi syndrome 
(OMIM 214500). Studies using the bg mouse may contribute to the 
understanding of the accelerated phase of Chediak-Higashi syndrome 
by helping to reveal the role of CTLA4 in T-cell regulation and 
lymphoproliferation. 

Osteopetrosis in humans has not been found associated with 
mutations in CSFI.  However, op mice are a valuable resource in the 
study of osteopetrotic diseases and have contributed significantly to 
the understanding of normal bone biology 

Mutations in TLR4 have been associated with reduced response to 
inhaled LPS in humans. Study of mice carrying the L ~ ~ C '  allele may 
lead to new approaches in the treatment of septic shock, endotoxin 
induced airway inflammation and other endotoxin mediated diseases. 

Mutations in MITF are associated with Waardenburg Syndrome type 
2 (WS2) (OMIM 1935 10) and Tietz syndrome (OMIM 103500). 
Studies of mi mice can provide insights into mechanisms of 
melanocyte signaling and development. 

There are no human diseases known to be related to mutations in 
EEFIA2. Studies of wst mice have revealed mechanisms in the 
developmental regulation of protein translation. 

Mutations in the human HR gene are associated with congenital 
atrechia with papules (OMIM 209500). 
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S~ontaneous Immunological Mutations in the Mouse 

Severe combined immune deficiency (~rkdc"'~) 

In 1983, Bosma et al. (2) reported a mutation (scid) in a colony of C.B-17 mice 

whose phenotype resembled human severe combined immune deficiency (SCID). 

Homozygosity for the scid mutation results in a deficiency of T and B lymphocytes with 

accompanying hypogammaglobulinemia and absence of both humoral and cell-mediated 

immune function (reviewed in (3)). Although C.B-17-scid mice have defects in adaptive 

immunity, many aspects of their innate immune function are unaltered ((4) and included 

references). C.B-17-scid mice have been widely used as hosts for human 

hematolymphoid cells, but intact innate immunity prevented long term survival of these 

cells. Backcrossing of the scid mutation onto the NODJLt strain background, which 

confers multiple defects in innate immunity, provided a scid mouse model in which 

survival of transplanted human cells was significantly increased (4). NODILtSz-scid 

mice are now a commonly used host for normal as well as malignant human 

hematolymphoid cells in many areas of research. 

The scid mutation results in failure of V@)J recombination (5-8) and also causes 

a defect in DNA double-strand break @SB) repair (9, lo), which leads to increased 

radiosensitivity (1 I). These observations preceded the discovery that the mutation 

causing the scid phenotype was within the gene encoding the catalytic subunit of a DNA- 

dependent protein kinase (DNA-PK,) (12), now given the formal gene symbol Prkdc. 

DNA-PK is a serinelthreonine protein kinase composed of the catalytic subunit as well as 

a regulatory component, the Ku701Ku80 heterodimer, which binds DNA ends. DNA-PK 

plays a role in non-homologous end joining and is essential to the proper functioning of 
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the mechanisms of DSB repair and V@)J recombination as well as a number of other 

processes (for review, see (13)). 

Mutations in DNA-PKcs have been associated with SCID in both Arabian foals 

(14) and Jack Russell terriers (15). However, of the many severe combined immune 

deficiencies known in humans, none have yet been associated with mutations at the 

human PRKDC locus. The severity of V@)J recombination defects in animals with 

DNA-PKcs mutations correlates with the normal enzymatic activity of DNA-PK in the 

species (15). Genetic DNA-PKcs deficiency causes a severe V@)J recombination deficit 

in horses, which have relatively high normal DNA-PK activity. The level of DNA-PK 

activity in humans is many times higher than that of horses, suggesting that humans may 

have a profoundly severe phenotype as a result of a genetic DNA-PKcs mutation. It is 

possible that a gennline mutation in PRKDC would be lethal (15). DNA-PKcs defects in 

mice, in which DNA-PK activity is relatively low, cause a less severe V@)J 

recombination deficit than in humans or horses. Nonetheless, in addition to being 

important tools in hematology, cancer and AIDS research, mice homozygous for the scid 

mutation are a valuable models for the study of combined immune deficiency and for 

investigation of the normal biological role of DNA-PK in non-homologous end joining. 

Analysis of the differential requirement for DNA-PKcs between species may reveal 

important insights into the mechanisms of V@)J recombination and DSB repair. 

Nude (Fomzl ""l 

The nude (nu) mutation was first reported in 1966 as an autosomal recessive 

mutation that resulted in hairlessness and failure to thrive (16). In 1968, Pantelouris (17) 
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observed that nu mice were congenitally athymic and exhibited leukopenia. Extensive 

studies in many laboratories have utilized these T-cell-deficient mice to examine the roles 

of T-cells in host defense against pathogens and in immune responses to various antigens. 

The mouse nu mutation is within a gene encoding a forkheadwinged helix 

transcription factor (18). Members of this family of transcription factors are involved in 

gene regulation during embryological development and cell differentiation (19). The 

disrupted gene responsible for the nu phenotype was originally designated as whn 

(winged-helix-nude), but was renamed Hfhl l  and, more recently, Foxnl to comply with 

unified nomenclature designation for forkheadwinged helix transcription factors (20). A 

second mutation at the nude locus, named 'streaker' (nu"?, occurred in an inbred colony 

of AKRfJ mice (21,22). The phenotype of these mice resembles that of nu mice and the 

symbol for the mutation has been designated Foxnl""". Mutations in homologous genes 

have also been reported in rats (23) and guinea pigs (24). Foxnl is expressed specifically 

in the epithelial cells of the thymus and skin (18). Thus, the T cell deficiency seen in nu 

mice is a result of a defective thymic microenvironment rather than intrinsic defects in T 

cell progenitors. 

Mice carrying the nu mutation are valuable tools for cancer research since they 

serve as experimental hosts for certain human neoplasms (25) (for review, see (26)). 

However, mice with the scid mutation are now recognized as a more appropriate model 

for studying human tumor biology than nu mice. Nude mice lack mature T cells, but they 

do have functional B cells and circulating immunoglobulin, as well as high levels of NK 

cell activity, which can prevent the growth of certain tumors. Many tumors, particularly 

those of hematopoietic origin, grow better in scid mice, which lack both B and T cells. 
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Some solid tumors, however, such as mammary cancers, appear to grow equally well in 

nu and scid mice, and thus nu mice are still a commonly used model in studies of solid 

tumor biology and experimental therapy (27,28). 

The nu mouse was originally proposed as a model for DiGeorge syndrome in 

humans, but this mutant lacks certain characteristics of DiGeorge syndrome, such as 

parathyroid hypoplasia and cardiac anomalies. DiGeorge syndrome has since been found 

to be due to deletion of a region of human chromosome 22q11, which contains a number 

of genes that may be responsible for the syndrome (29). Recently, a nonsense mutation 

in exon 5 of the homologous human gene, termed winged helix nude (WHN), was 

reported in a family in Italy (30,3 1). Two sisters presented with a phenotype of impaired 

T-cell function, alopecia, nail dystrophy and absence of a thymic shadow. This rare 

condition is an interesting example of how a mutation in a gene not expressed in 

hematopoietic cells can result in an immunodeficiency disease in humans. 

Scurfy (FoxpYf'l 

The scurfy (sf) mutation was first reported in 1959 (32) and further described in the early 

1990's (33-35). Scurfy is an X-linked mutation characterized by anemia, 

thrombocytopenia and a lymphoproliferative disorder that results in splenomegaly, 

hepatomegaly, and enlarged lymph nodes. These pathologic changes are accompanied by 

diarrhea, exfoliative dermatitis and runting (33,34). Hernizygous males have an average 

lifespan of 24 days (33). The lymphoproliferative disease in sf mice is mediated by 

CD4TD8- T lymphocytes (36,37), and involves over-expression of a variety of cytokine 

genes (38,39). 
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The sf mutation was at one time proposed to be a model for human Wiskott- 

Aldrich syndrome (WAS) ( 3 9 ,  because sf and WAS map to homologous regions of the 

mouse and human X chromosomes (40,41). However, sf has recently been identified as 

a mutation in the Foxp3 gene, which encodes a novel forkheadwinged helix transcription 

factor called scurfin (42). Although the phenotype of sf mice clearly demonstrates the 

requirement of the scurfin protein for normal T cell function, the precise role of this 

transcription factor and the mechanisms that regulate its expression have not yet been 

elucidated. 

The growing family of forkheadwinged helix transcription factors contains many 

members that are highly conserved between species (19,20,43). The human homologue 

of the mouse scurfin gene has been identified. Mutations in this gene, FOXP3, have been 

found associated with a human X-linked syndrome of immune dysregulation, 

polyendocrinopathy and enteropathy called IPEX (44-46) (for review, see (47)). IPEX is 

a frequently fatal disease of childhood that shares many of the phenotypic characteristics 

of the sf mouse (48). Patients suffer from insulin-dependent diabetes mellitus (IDDM), 

hypothyroidism, immune thrombocytopenia, and eczema. There are currently no 

treatments shown to have long-term success in IPEX patients (49). The mouse sf 

mutation provides a valuable model for the study of this severe human autoimmune 

disease and may assist in the development of immunological therapy. Studies of these 

mice may also offer further insights into the molecular mechanisms involved in the 

regulation of T cell function in the normal human immune system. 
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Lymphoproliferation !~nfr@5'~? and generalized lymphoproliferative disease ( ~ n f ~ f 6 ~ ' ~ )  

Mice homozygous for the lymphoproliferation (Ipr) and generalized 

lymphoproliferative disease (gld) mutations share nearly identical phenotypes, 

characterized by systemic autoimmunity and massive T-lymphoid hyperplasia. 

Accompanying polyclonal B cell activation results in hypergammaglobulinemia and high 

levels of autoantibodies against a variety of autoantigens in both Ipr and gld mice, 

contributing to the development of immune complex glomerulonephritis. Both T- and B- 

lymphocyte populations of Ipr and gld mice are deficient in their responses to exogenous 

immune stimuli (50, 51) (for review, see (52)). 

The Ipr mutation arose during the development of the MRLMpJ inbred strain, 

and was first reported in 1978 (50,53) as a model of systemic lupus erythematosus 

(SLE). MRL wild type mice do not exhibit lymphoproliferation, but do develop SLE-like 

symptoms at about two years of age, leading to the original hypothesis that the Ipr 

mutation may act only to accelerate the development of autoimmune disease in strains 

already prone to autoimmunity. Although transfer of this mutation to a variety of inbred 

backgrounds lacking a predisposition to autoimmunity results in lymphadenopathy and 

autoimmunity, the severity of disease varies depending on the genetic background of the 

strain (54). MRWMpJ mice are the most severely affected by the Ipr mutation; 

homozygotes die by 6 months of age. 

The observation that neonatal thymectomy significantly reduces autoimmune 

disease and lymphadenopathy in Ipr mice (55) was followed by the discovery that the Ipr 

mutation caused the aberrant expansion of an abnormal population of CD4- CD8- (double 

negative, DN) T cells (56). Approximately a decade later, the lpr mutation was found to 
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be in the gene encoding the Fas antigen (also called CD95 or APO- I), a widely expressed 

cell surface protein that mediates apoptosis and is involved in the negative selection of 

autoreactive T cells in the thymus (57, 58). Fas shares structural homology with the 

tumor necrosis factor receptor family, and the gene has since been renamed 'Tumor 

necrosis factor receptor superfamily, member 6' or Tnfrsfs. A new allele at the lpr locus 

was reported in 1990, termed lpf (59), resulting in a phenotype similar to the lpr 

mutation. The lpr mutation results in the absence of cell surface Fas, while the lpfg 

mutation results in expression of a non-functional receptor (60). The gld mutation, which 

produces a phenotype similar to lpr, occurred in a colony of C3HlHeJ inbred mice (5 1, 

61). The gld mutation was found to be the result of a point mutation in the gene encoding 

the ligand for Fas (Fasl, CD95L) (62), now termed 'tumor necrosis factor superfamily 

member 6' (Tnfsm. 

Fas mediated apoptosis is crucial to the proper development and function of the 

immune system (see review (63)). Studies of lpr and gld mice have provided valuable 

insights into the death receptor mediated system and its role in human disease (for review 

see (64)). In humans, mutations affecting both Fas (TNFRSF6) and Fas ligand (TNFSF6) 

are associated with Autoimmune Lymphoproliferative Syndrome (ALPS), a childhood 

dsease characterized by lymphadenopathy and autoimmunity. Mutations of TNFRSF6 

are commonly associated with a form of ALPS called ALPSlA, also known as Canale- 

Smith syndrome (65-68). A mutation of TNFSF6 was discovered in a screening of SLE 

patients (69). This patient had lymphoproliferative disease as well as symptoms of SLE, 

and the case was later designated as an alternative form of ALPS, called ALPSlB (70). 

Somatic mutations of Fas have also been associated with a number of human 
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malignancies including T-cell leukemia (71,72), multiple myeloma (73), and non- 

Hodgkin's lymphoma (74) (for review, see (75)). 

Dominant white spotting  it^) and steel { ~ i t l ~ ' )  

Mutations at the dominant white spotting (W) (76,77) and steel (Sl) (78) loci 

affect the development of hematopoietic precursor cells, mast cells, neural crest-derived 

melanocytes and germ cells. Consequences of these developmental abnormalities include 

macrocytic anemia, mast cell deficiency, pigmentation abnormalities and infertility 

(reviewed in (79)). There are a number of alleles at both the W and Sl loci, resulting in 

diverse phenotypic effects that vary in severity from embryonic lethality to mild anemia 

with survival to adulthood (79-81) 

Although the phenotypes of Wand Sl mutant mice are similar, numerous early 

studies indicated that the sl mutation affected the extracellular microenvironment, while 

the W mutation was within a gene expressed by the affected stem cells themselves (82- 

86). The genes disrupted by these two mutations were found to encode a growth 

factorlreceptor pair essential to a variety of developmental processes. The W mutation 

affects the Kit proto-oncogene (also known as c-Kit), which encodes a transmembrane 

receptor tyrosine kinase, KIT. (87, 88). The steel mutation affects the gene encoding 

stem cell factor (SCF) (also called mast cell growth factor, kit-ligand or steel factor, 

current approved gene symbol: Kitl), which is the ligand for KIT (89-92) (see review 

(93)). 

KIT is expressed at various levels on a wide variety of cell types. SCF (Kitl) is 

expressed on stromal cells, fibroblasts and endothelial cells, and is found at low levels in 
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the circulation. This growth factor/receptor system has been implicated in a wide variety 

of processes, from promotion of hematopoietic cell survival and proliferation to 

mediation of cell migration and adhesion (for review, see (94-97). 

In humans, heritable mutations in the homologue of the mouse Kit gene, KIT, 

have been found to cause piebaldism (98,99), a genetic disorder resulting in patches of 

white skin and hair due to a disorder in melanocyte development. In contrast to the W 

mouse, individuals affected by piebaldism exhibit no apparent defects in mast cell 

function nor do they develop anemia as a consequence of the KIT mutation. 

Spontaneous, non-familial mutations in the KIT gene have been found in cases of human 

mast cell neoplasia and cutaneous mastocytosis (100, 101), as well as in tumors of the 

gastrointestinal stroma (102, 103). These mutations often cause constitutive activation of 

KIT (for a review of KIT activating mutations, see (104)). No mutations have been 

found in KITLG, the human homologue of the mouse stem cell factor gene. 

X-linked immune deficiency ( ~ t k " ~ )  

X-linked agammaglobulinemia (XLA) in humans was first reported as a primary 

immunodeficiency disease in 1959 (105). XLA patients have severely decreased levels 

of mature B lymphocytes, dramatically reduced levels of serum immunoglobulin (Ig) and 

are highly susceptible to bacterial infections (105, 106). Many years later, the X-linked 

immune deficiency (xid) mutation was observed in the CBAIN mouse strain, resulting in 

a disease with characteristics similar to, but less severe than human XLA (107-1 11). 

Peripheral B cells in xid mice are moderately reduced in number, and those present 

display a primarily immature phenotype. Mouse xid is also characterized by impaired 
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signaling through a variety of B-cell surface receptors, absence of peritoneal B-1 cells, 

reduced levels of serum IgM and IgG3 and failure to respond to type II thymus- 

independent (TI-II) antigens (reviewed in (1 12)). 

The mutations causing both the human and mouse chseases lie within the 

respective genes encoding a cytoplasmic protein-tyrosine lunase, coined Bruton's 

agarnmaglobulinemia tyrosine kinase (Btk) (1 13-1 16). Btk is a member of a growing 

family of homologous tyrosine kinases (reviewed in (1 17, 118)). Although Btk appears 

to function primarily in the B-cell lineage, in development and expansion of early B cells 

and in survival and activation of mature B cells, this tyrosine lunase is expressed in 

erythroid progenitors and monomyeloid cells in adchtion to B cells (1 13, 114). Btk is not, 

however, expressed on T or NK cells. Mouse xid results from a specific rnissense 

mutation in Btk affecting the pleckstrin homology (PH) domain of the BTK protein (1 15, 

116). 

Human XLA has been found associated with an extensive variety of BTK 

mutations in affected individuals (1 19). A comprehensive database of these mutations 

has been established to assist clinicians and researchers in their study of the disease 

(120). Efforts have been made to relate the specific BTK domain mutated to the severity 

of the phenotype in humans but no definitive connections have been drawn. The 

presence of phenotypic variation in XLA, even among affected individuals with identical 

genetic abnormalities, highlights the existence of modifier genes affecting B cell 

development. Mochfier genes, or some differential requirement for the BTK protein 

between species, is the likely cause of the disparity of disease severity between mouse 

and human, as well. Human BTK mutations that are almost identical to mouse xid do not 
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result in a milder XLA phenotype than other BTK mutations. Moreover, mice with a 

targeted null mutation of Btk have a phenotype similar to that of xid mice (121, 122), 

reaffirming that absence of BTK function, not the nature of the mutation, results in the 

species specific B-cell defects seen in XLA patients and xid mice. The BTK gene is 

involved in a wide array of complex functions. Studies of the disease variations between 

mouse and human and among individual human XLA patients have contributed to the 

elucidation of the role of BTK in B cell development and signaling and revealed insights 

into other pathways involved in B cell function. These discoveries have been the subject 

of a number of recent reviews (123-126). New techniques of identifying BTK mutations 

in humans have also led to the identification of several other genetic B lineage defects 

(127). 

Alym~hoplasia !~ap.?k14"'~) 

Alymphoplasia (aly) mutant mice are homozygous for an autosomal recessive 

mutation resulting in absence of lymph nodes and Peyer's patches, structural defects in 

the spleen, and impaired antibody and cell-mediated immune responses (1 28- 130). 

Recent studies have shown that in addition to structural defects in secondary immune 

organs, aly mice have intrinsic defects in both B and T cells (13 1, 132). Thus, the 

abnormal immune function seen in these mice appears to be due to both stromal 

insufficiency and an innate defect in lymphocyte function. 

Recently, Nuclear Factor (NF)-K-B-inducing kinase (Nik) was identified as the 

mutated gene responsible for the aly mutation (133). A member of the mitogen activated 

protein kinase family (134), the Nik gene has since been renamed Map kinase kinase 
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kinase 14 (Map3k14) (81) to comply with evolving standard nomenclature. The NIK 

protein is a serinelthreonine kinase involved in the induction of NF-K-B through a 

number of different cytokine receptors (134). The mutation in aly mice encodes a defect 

within the carboxyl-terminal interacting domain of NIK, disrupting its ability to associate 

with the adaptor proteins that target its activity, while leaving its kinase region intact 

(133). 

The mechanisms through which NIK functions in cytokine signaling and how the 

functional NIK deficit seen in aly mice could result in their characteristic phenotypic 

defects are unclear. While it is widely accepted that NIK stimulates NF-K-B activity, the 

receptors that the kinase conveys signals through have not been fully clarified (134-137). 

NF-K-B is a transcription factor that is induced by many cytokines and regulates the 

expression of a large number of immune and inflammatory genes (138, 139). In the 

original report of the discovery of the NIK protein, NIK was implicated in NF-K-B 

induction through TNF receptors, CD95 and IL-1 (134). A recent study using mice 

carrying a targeted deletion of the NIK gene contradicts these findings and implicates 

NIK in regulation of signaling through the lymphotoxin-f3 receptor (137). Although the 

NIK deficient mice used in this latter study have a complete absence of NIK protein 

whereas aly mice produce normal levels of a mutated NIK protein, their phenotypes are 

almost identical. 

The human NIK gene was considered an interesting positional and biological 

candidate for frontotemporal dementia with parkinsonism linked to Chromosome 17 

(FTDP-17) (OMIM 600274) (140). However, mutational screening has not revealed 

concomitant mutations of the NIK gene with FTDP-17 (140). Mutations in the gene 
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encoding microtubule-associated protein tau (MAPT) have since been found associated 

with some cases of FTDP-17 (141). There are currently no known human diseases 

caused by mutations in the NIK gene. However, X-linked anhidrotic ectodermal 

dysplasia with immune deficiency (EDA-ID) (OMIM 300291) has recently been reported 

to be associated with mutations in the gene IKBKG (142), which encodes a protein (IKK- 

y, NEMO, FP-3) that interacts with the NIK protein (143) and is involved in regulation 

of NF-K-B activation. Mutations in IKBKG cause impairment of NF-K-B signaling which 

results in EDA-ID. In addition, a number of inflammatory diseases including rheumatoid 

arthritis, asthma and multiple sclerosis are associated with enhanced NF-K-B induction. 

Studies of aly mice will continue to contribute to the understanding of the complex 

signaling pathways involved in NF-K-B induction in hematopoietic cells. Clarification of 

these pathways will provide further insight into the inflammatory process, assisting in the 

development of novel therapies for a diverse range of inflammatory diseases. 

Beige ( L ~ S ~ ~ )  

The beige (bg) mutation was first identified as a coat color mutation that resulted 

in large, abnormal granules in all granule containing cells, including granulocytes and 

melanocytes (144, 145). In addition to abnormal hair pigmentation, bg mice have 

defective cytotoxic T cell responses and a deficiency in NK cell function. Beige mice 

display increased susceptibility to infection by a number of pathogens, including 

cytomegalovirus (146) and Mycobacterium avium (147). These mice also exhibit a 

reduced ability to reject transplanted tumors and have a bleeding disorder due to a platelet 

storage pool deficiency (148). Characteristic features of the bg mutation are also found 
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in Chediak-Higashi Syndrome (CHS) in humans (145, 149) and in a similar disease 

described in a number of other mammals, including mink, cattle, cats and killer whales 

(150). There are also a number of different alleles of bg resulting from distinct 

spontaneous mutations in the mouse (81). 

Complementation analysis had suggested that the same gene was responsible for 

mouse bg, human CHS and CHS-like disease in other species (151). Two groups 

independently identified the mouse bg gene (152, 153), which encodes a widely 

expressed cytosolic protein implicated in the regulation of lysosomal fission (1 54) and 

has been designated the lysosomal trafficking regulator gene (Lyst). Identification of the 

mouse bg gene led to the discovery of a novel human gene with significant sequence 

homology to the mouse gene (153, 155). Sequencing of the human gene, currently called 

CHSI, revealed the presence of mutations in several CHS patients (153, 155). 

Subsequent studies confirmed that the homologous gene was responsible for the CHS- 

like disease in rats (156) and cows (157). The precise function of the CHSIbeige protein 

is not yet clearly understood. Two recent reviews contain useful background information 

and summaries of the current knowledge in the field (148, 158). 

The disease phenotype seen in bg mice and human CHS patients is remarkably 

similar. However, CHS patients commonly develop a lymphoproliferative disorder 

termed the 'accelerated phase' of the disease, which does not occur in bg mice. It has 

recently been reported that intracellular trafficking of CTLA-4 (CD152) is defective in 

CHS patients (159). CTLA-4 is a negative regulator of T cell activation, and the 

decreased expression of this molecule on T cells of CHS patients may disrupt T cell 

homeostasis resulting in the lymphoproliferative syndrome. CTLA-4 trafficking in bg 
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mice is relatively unaffected. Therefore, the absence of the lymphoproliferative disease 

in bg mice may be a function of species-specific variations in intracellular processing of 

the CTLA-4 protein. 

Osteopetrosis !C?floP) 

Mice homozygous for the osteopetrosis (op) mutation are small in size and 

toothless, with a shortened lifespan and reduced fecundity. They have a severe osteoclast 

deficiency and exhibit defects in bone remodeling (160). The op mutation affects the 

development and differentiation of most macrophage subpopulations, resulting in reduced 

numbers of osteoclasts as well as tissue macrophages in op mice (161), functional deficits 

in peritoneal macrophage populations (162, 163) (reviewed in (164)) and phenotypic 

abnormalities in dendritic cells (165). Due to reduction of marrow cavity volume, bone 

marrow hematopoiesis in op mice is severely reduced (162), and compensatory 

extramedulary hematopoiesis is seen in both spleen and liver (166). 

Transplantation of bone marrow or spleen cells from wild type mice does not 

rescue the osteopetrotic phenotype of op mice (167). This observation suggested that the 

op defect was in the stromal microenvironment rather than the hematopoietic stem cells 

themselves, and led to the discovery that the op mutation is a single base change in the 

macrophage colony stimulating factor gene, Csfl (168). This gene encodes macrophage 

colony stimulating factor (CSF-1, also called M-CSF), which is a cytokine involved in 

regulating osteoclastogenesis and macrophage production. CSF-1 also plays a role in 

brain development (169) and in both male and female reproduction (for reviews, see 

(170, 171)). 
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Of the many forms of osteopetrosis in humans, none has yet been proven 

associated with mutations in the human CSFl  gene. An autosomal dominant form of 

osteopetrosis showed linkage to the chromosomal region in which human CSFl  is located 

(172), but mapping data did not confirm linkage with the CSFl  gene (173). Nonetheless, 

op mice and other osteopetrotic mutants have been very valuable in studying normal bone 

biology as well as the pathophysiology of bone resorption disease in humans (for review, 

see (174)). Much of the current knowledge of the physiological functions of CSF-1 has 

been discovered through the study of osteopetrotic mice. 

Defective lipopolysaccharide response !Tlr4b"d) 

Bacterial endotoxin is a component of the cell wall of Gram-negative bacteria. 

Also know as lipopolysaccharide (LPS), endotoxin elicits a potent inflammatory response 

in most strains of mice as well as in many other mammalian species. More than 30 years 

ago, it was discovered that C3WHeJ mice exhibited a defective immune response to 

lipopolysaccharide (175-177), providing a model to study the physiology of the 

endotoxin response as well as the genetic control of this response (178). The defective 

allele for the endotoxin response was labeled Lpd, to distinguish from the normal allele, 

LP s" 

Endotoxin exerts its effect on multiple cell types in the immune system (179). 

The normal endotoxin response includes mitogenic stimulation of B cells (180, 181), 

proliferation of a subpopulation of T cells (1 82), macrophage cytotoxicity (1 83) and 

inhibition of the phagocytic capacity of macrophages (184). C3WHeJ mice are defective 

in these normal cellular responses to LPS. They do not produce the high levels of pro- 



www.manaraa.com

inflammatory cytokines that normally characterize the LPS response, and are therefore 

more resistant to the lethal effects of LPS (185). As a result, however, C3WHeJ mice are 

more susceptible to infection by Gram-negative organisms (186, 187). In 1977, it was 

reported that C57BUlOCr mice also exhibit a defective LPS response (188), which was 

mapped to the same locus disrupted in the C3WHeJ strain (189, 190). 

The mutations responsible for defective LPS responses in mice were recently 

found to disrupt the Toll-like receptor-4 (Tlr4) gene (191, 192). Toll-like receptors play a 

key role in the induction of the innate immune response, which is the first line of defense 

against infectious organisms (for review, see (193, 194)). The family of mammalian 

Toll-like receptors have significant homology to Drosophila Toll (195) (for review, see 

(196)). TLR4 is a transmembrane protein that conveys signals which activate NF-KB to 

promote expression of the genes involved in the LPS response (197). TLR4 appears to 

function only in the LPS response pathway, so other immunological functions are normal 

in ~psdmice. Mice with a targeted mutation of the 77r4 gene have a phenotype that very 

closely resembles that of C3H/HeJ mice carrying the Lpsd allele (198). While both 

C3WHeJ and C57BUlOCr mice have mutations in 77r4, differences had been observed 

in levels of interferon (IFN)-y production between the two strains in response to various 

microorganisms (199). This variation has recently been recognized as the result of a 

second mutation in the C57BUlOCr strain, in the ZL-12Rb2 gene (200), which results in 

deficient induction of IFN-y through the IL-12 receptor (201). Thus, C57BUlOCr mice 

are even more resistant to the toxic effects of LPS than C3WHeJ mice. 

In humans, exposure to inhaled endotoxin can cause various degrees of airway 

inflammation and asthma (202). The observation that certain individuals are sensitive to 
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environmental endotoxin exposure while others are more resistant prompted the 

examination of the genetic regulation of t h s  response in humans. Screening of a group 

of subjects for both TLR4 mutations and degree of responsiveness to inhaled LPS 

revealed that mutations in the human TLR4 gene were associated with airway 

hyporesponsiveness to LPS challenge (203). Like the C3WHeJ mouse, humans with 

reduced endotoxin responsiveness may be more susceptible to infection by Gram- 

negative organisms. Further examination of the role of TLR4 in LPS signaling may 

disclose new approaches in the treatment of endotoxin mediated diseases. 

Other mutations {microphthalrnia (Mi@). wasted (E~?fla2""). hairless (hr)l 

A number of other spontaneous mouse mutations have immunological 

abnormalities as a component of a broader phenotype. One of these is microphthalmia 

(mi) (204). Mutations at this locus affect pigmentation, secondary bone resorption, eye 

development, hearing and immunological function (reviewed in (205)). The 

immunological changes include reduced numbers and deficient function of mast cells and 

NK cells (206) and osteoclast defects resulting in osteopetrosis (207). The mi gene has 

been identified as a transcription factor in the basic-helix-loop-helix-leucine zipper 

(bHLH-ZIP) family (208,209), now named Mi& whlch regulates transcription through 

binding to specialized motifs found in melanocyte specific promoters. Recent studies 

suggest that the immunological defects may be due both to a defect in the bone marrow 

microenvironment (2 10) and to intrinsic cellular abnormalities (2 1 1 , 2  12). See (2 13, 

214) for reviews of the role of MITF protein in melanocyte signaling and development. 

Mutations in human MZTF have been found associated with Waardenburg syndrome 
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(WS) type II (215,216). WS type I ( O m  193500) and type III (OMIM 148820) are 

caused by mutations in the PAX3 gene (217) which has been shown to regulate MZTF 

gene expression (2 1 8). 

Mice homozygous for the wasted (wst) mutation were noted for their neurological 

phenotype. Characterized by development of tremors and ataxia beginning at about 21 

days of age, followed by weight loss, progressive paralysis and lymphoid hypoplasia, wst 

mice die shortly after weaning (219). The immunological abnormalities of wst mice 

include increased sensitivity of hematopoietic cells to the cytotoxic effects of ionizing 

radiation (219,220), defects in secretory Ig responses (221,222), disproportionate T-cell 

subsets with abnormalities in cytokine levels (223) and sensitivity of thymocytes to 

apoptosis (224). The wst mutation is caused by a deletion in Eefla2 gene encoding an 

isoform of eukaryotic translation elongation factor la (EFla) (225). Eefla2 is expressed 

only in brain, heart and skeletal muscle, and plays a role in protein synthesis in 

mammalian cells (226)(for review, see (227)). The neurological phenotype in wst mice is 

presumably related to defects in protein translation in the absence of EFla2 in brain, 

heart and skeletal muscle of these mice. However, questions still remain as to how loss 

of this protein can cause the immunological deficits seen in wst mice, since the protein 

has not been detected in splenic tissue of either mice or rats (225). Although wst was 

originally proposed to be a model of ataxia telangiectasia (AT) (219,228,229), AT is 

now known to be associated with mutations in the human ATM gene (230). The human 

homologue of the wst gene, EEFlA2, has been identified and sequenced (23 I), but there 

is currently no known disease caused by mutations of this gene in humans. 
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The most apparent feature of the hairless (hr) mutation is total loss of hair 

beginning at 3 - 4 weeks of age (232-234). In addition to alopecia, hr mice also have age 

related immunological defects and a high incidence of thymic lymphoma (235-237) (for 

review, see (238,239)). There are a number of different hr alleles (81). The wild type 

gene encodes a predicted 1182 amino acid protein, 'HR', containing a zinc finger domain 

with a 4-cysteine motif (240). The hr gene is widely expressed, and it has been 

speculated that the HR protein may act as a transcription factor (240); however, its true 

functions have not yet been resolved. Although thymic defects have been reported in hr 

mice, no evidence of hr protein expression has been detected in the thymus (241). 

Mutations of the human HR gene have been found in individuals with congenital atrechia 

with papules (242-245). This disorder is characterized by complete hair loss and papular 

lesions similar to those seen in mice homozygous for the rhino allele of hairless (hJh); 

however, immunological abnormalities have not been reported in these patients. The 

molecular basis of the hairless mutations and currently known functions of the hr gene in 

both humans and mice have been reviewed recently (246-248). 

Motheaten (Hcph") 

The original motheaten (me) mutation occurred spontaneously on the inbred 

C57BW6J background (249). Homozygous me mice are severely immunodeficient, 

express high levels of serum autoantibodies (250-253) and die at approximately 3 weeks 

of age from inflammatory lesions in the lungs and elsewhere. A second mutation at this 

locus, 'viable motheaten' (me"), was reported in 1984 (250). Homozygous mev mice have 

a similar but less severe phenotype, with a lifespan of approximately 9 weeks. The 
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longer lifespan of mevmice in comparison to me mice allowed more extensive study of 

the nature of the mutation. 

In 1993, the motheaten mutations were determined to be in the hematopoietic cell 

phosphatase (Hcph) gene (254,255). The Hcph gene encodes the Src homology region 2 

(SH2) domain-containing protein tyrosine phosphatase- 1 (SHP- 1) (256,257), which 

functions as a negative regulator of signaling through a number of hematopoietic growth 

factor receptors. SHP-1 exerts its negative regulatory role in hematopoietic cell growth, 

dfferentiation and activation by dephosphorylating receptors, such as CD72, receptor- 

associated tyrosine kinases such as ZAP-70 or Jak2, and other signaling molecules 

recruited through adaptor proteins such as Grb-2. (For a thorough review of SHP-1 

signaling see (258)). SHP-1 has also recently been found to play a critical role in the 

induction of apoptosis and cell cycle arrest in response to y-irradiation (259). The 

phenotypic differences between the two allelic mutations at the me locus are due to a 

variation in expression levels of the SHP-1 protein. The me mutation results in the total 

absence of SHP-1 protein due to creation of a premature termination codon, while the mev 

mutation (HcphmV) results in a significant reduction in SHP-1 activity due to the 

generation of several alternative splicing sites. 

Although the motheaten mutations are not a model for any known human disease, 

they provide a valuable resource for the study of the role of a specific protein tyrosine 

phosphatase (PTP) in the development and regulation of the immune and hematopoietic 

systems. Studies of motheaten mice have provided insight not just into the function of 

the SHP-1 phosphatase but into the general function of phosphatases and their integral 

role in regulating an enonnous variety of cell signaling cascades and cell functions (258). 
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The human homologue of the mouse Hcph gene is called PTPN6 (260). No known 

heritable mutations exist in human PTPN6. If germ-line mutations in this gene do occur 

in humans, they may well result in embryonic lethality. Recently, however, aberrant 

SHP-1 expression has been associated with a variety of human cancers. An errant splice 

product of PTPN6 has been found in human myeloid leukemia cells (261). This post- 

transcriptional processing error is thought to result in a functional haplo-insufficiency of 

SHP-1 protein, possibly contributing to leukemogenesis (261). SHP-1 expression is 

absent or significantly reduced in many human T-cell lymphomas as a result of a 

transcriptional block caused by methylation of the SHP-1 promoter (262). The absence 

of SHP-1 protein is associated with constitutive activation of the interleukin 2-receptor 

(LL-2R) -associated JakISTAT pathway and may contribute to the malignant 

transformation human T cells (262). Defective expression of SHP-1 has also been 

implicated in the pathogenesis of polycythemia Vera (263), and up-regulation of SHP-1 

expression has been found associated with human breast cancers (264). 

Conclusion 

Determination of the molecular bases of mouse immunological mutations has 

increased the understanding of the mechanisms of disease and aided in elucidating the 

roles of these genes in the intact immune system. Certain of these immunological 

mutations serve as homologues for human immunodeficiency and autoimmune diseases 

(70, 81,265). Although the pathological changes related to these mutations may be 

affected by physiological differences between mouse and man, the mouse models provide 

an invaluable resource for biomedical researchers. Continued studies of new 
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immunological mutations at The Jackson Laboratory and elsewhere will likely lead to 

further insights into the fundamental aspects of immune defense and expand the 

knowledge of the immune system. 



www.manaraa.com

Chapter 2 

SHP-1 PROTEIN TYROSINE PHOSPHATASE AND THE "MOTHEATEN" 

MOUSE 

Tyrosyl phosphorylation is a key regulatory mechanism involved in development 

and function of the immune system. The intricate dance between tyrosine kinases and 

phosphatases is crucial for maintaining balance in hematopoietic signaling. One misstep 

can have severe consequences, resulting in autoimmunity, immune deficiency, or cancer. 

As a result of the development of gene targeting techniques, there are now many mouse 

models lacking specific components involved in regulation of immune function. 

However, one of the first models for a specific tyrosine phosphatase deficiency was 

found in mice with one of two spontaneous allelic mutations at the motheaten locus, 

introduced in Chapter 1 of this manuscript. 

As discussed in Chapter 1, mice carrying mutations at the motheaten locus are 

deficient in SHP-1 (249,250,254). SHP-1 is a cytosolic protein tyrosine phosphatase 

(FTP) that plays a crucial role in regulating proliferation, differentiation, and other 

signaling processes in cells of the immune and hematopoietic systems. (For a review of 

FTP's in signal transduction, see (266)). As a result of SHP-1 deficiency, mice 

homozygous for the me or mev mutations have multiple hematological and 

immunological defects that are discussed in detail elsewhere. In addition to being 

valuable tools for the elucidation of SHP-1 function, studies using me and mev mice have 

provided many insights into a wide range of signaling pathways and mechanisms 

essential to maintenance of immune homeostasis (267). 
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SHP-1 functions primarily in the negative regulation of hematopoietic signaling 

events induced by cytokines, growth factors and antigens (for review, see (258)). The 68 

kD SHP-1 protein, (previously known as PTP-lC, HCP, SHP, SHPTPl and PTPN6), 

contains two N-terminal Src-homology 2 (SH2) domains, a phosphatase catalytic region, 

and a C-terminal region compatible with tyrosine phosphorylation (257,267) (Figure 

2.1). The SH2 domains mediate the recruitment of the SHP-1 protein to phosphorylated 

tyrosine residues within immunoreceptor tyrosine-based inhibitory motifs (ITIM's) in the 

cytoplasmic regions of inhibitory receptors and co-receptors (see review (268)). 

Structural rearrangement of the SHP-1 protein as a result of SH2 domain binding 

activates the phosphatase catalytic domain (269), which dephosphorylates the intended 

substrate, resulting in signal inhibition. 

- COOH 

Figure 2.1. Structure of SHP-1, showing the locations of the me and mev mutations. 

SHP-1 has been shown to interact with a variety of both cytoplasmic and 

membrane bound molecules in the regulation of B-cell signaling, including Lyn kinase, 

CD22 (270), paired immunoglobulin-like receptor B (PIR-B) (271) and CD72 (272) 

(Figure 2.2). The SHP-1 phosphatase is also involved in regulation of T cell receptor 

(TCR) signaling function (273) (Figure 2.3). SHP-1 associates with CD5, which is a 

transmembrane protein expressed on all T cells, and the B-la subset of B cells (274). 
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Figure 2.2. Functions of SHP-1 in regulating signals through the B-cell receptor (BCR). 

After BCR cross linking, the Src-family protein tyrosine kinase (PTK) Lyn has the 

principal role in phosphorylation of tyrosine residues in both the immunoreceptor 

tyrosine-based activation motifs (ITAMs) of Ig-do, as well as in the ITIMs of inhibitory 

co-receptors (such as CD22, PIR/B, CD72 and FcyRIIB). Phosphorylation of ITIMs by 

Lyn results in recruitment of SHP-1 through its SH2 domains. From its position at the 

cell membrane, SHP-1 dephosphorylates activated PTK's and, by extension, PTK 

substrates, resulting in inhibition of BCR mediated signals. (Figure based on (258)). 
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Figure 2.3. Functions of SHP-1 in regulating signals through the T-cell receptor (TCR). 

TCR engagement induces the transphosphorylation of the Syk-family PTK ZAP-70 by 

the Src-family PTK Lck, which is associated with the CD4JCD8 co-receptor. The 

consequent phosphorylation of ITIMs within inhibitory receptors such as KIR, Ly-49A 

and CD5 results in recruitment of SHP-1 through its SH2 domains. SHP-1 can directly 

associate with and dephosphorylate receptors or activated PTKs, or indirectly 

dephosphorylate other signaling effectors such as SLP-76, through association with 

adaptor proteins such as Grb2. (Figure based on (258)). 
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B-la B cells are often associated with autoimmunity in humans (reviewed in (275)), and 

constitute a large percentage of total B cells in mev/mev mice. Chapter 3 describes studies 

using mice homozygous for both the mev mutation, and a targeted deletion of the CD5 

gene. These mice were developed to investigate the function of CD5-mediated signaling 

in development of autoimmunity in the absence of SHP-1, as well as to provide insight 

into the role of SHP-1 in regulating signals through the CD5 receptor. 

Cells of the myeloid lineage are also dependent on SHP- 1 to regulate signals 

through a multiplicity of receptors. In particular, macrophages from motheaten mice are 

hyper-responsive to signals through receptors for granulocyte-macrophage colony- 

stimulating factor (GM-CSF) (276) and macrophage colony stimulating factor (M-CSF or 

CSF-1) (277), which direct proliferation and survival of cells of the granulocyte- 

macrophage lineage and their progenitors. Heightened proliferation and accumulation of 

myeloid-lineage cells is a characteristic of the motheaten mouse. Chapter 4 describes the 

generation of mice transgenic for macrophage specific expression of a dominant negative 

form of the SHP-1 protein, to investigate the cell autonomous effects of absence of 

functional SHP-1 in macrophages and the effects of dysregulated macrophages on other 

cell populations. 

With the known role of SHP-1 as a negative regulator of cell signaling, it is 

logical to postulate that loss of function of this regulatory protein could contribute to 

malignant transformation, or that SHP-1 can act as a tumor suppressor gene. The 

association of SHP-1 mutations with human cancers is discussed in the section on the 

"motheaten" mouse in Chapter 1 (261,262). Studies are ongoing in our lab to identify 

neoplasms arising in aged +/me and +/mev mice caused by loss of SHP-1 heterozygosity, 
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in order to substantiate the putative role of SHP-1 as a tumor suppressor gene (254). 

Chapter 5 describes an osteogenic cell line derived from a spontaneous osteosarcoma that 

arose in a 25-month old C57BU6J +/mev mouse. Preliminary studes of this malignant 

neoplasm revealed that it was not caused by loss of expression of the SHP-1 protein. 

However, the cell line by itself, or when used in transplantation experiments, has value as 

a model for studying human osteosarcomas. 

Several other molecules exist which share some structural homology with SHP-1, 

includng SHP-2 (278) and an SH2 containing inositol polyphosphate 5'-phosphatase, 

SHIP (279), both of which contain SH2 domains and may serve purposes similar to SHP- 

1 in some incidences. However, it is evident by the severity of disease caused by SHP-1 

deficiency that there are few, if any, precisely redundant molecules that may serve as a 

substitute for SHP-1 in living systems. The known biological roles of SHP-1 are 

multitudinous, yet many of its functions still remain a mystery. Further investigation into 

the functions of this phosphatase may provide clues to expand the knowledge of a great 

many signaling pathways involved in normal immunological function. 
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Chapter 3 

ABSENCE OF CD5 DRAMATICALLY REDUCES PROGRESSION OF 

PULMONARY INFLAMMATORY LESIONS IN SHP-1 PROTEIN-TYROSINE 

PHOSPHATASE-DEFICIENT "VIABLE MOTHEATEN" MICE 

Abstract 

Mice homozygous for the viable motheaten (Hcphm+) mutation are deficient in 

SHP-1 protein-tyrosine phosphatase, resulting in severe systemic autoimmunity and 

immune dysfunction. A high percentage of B-cells in viable motheaten mice express the 

cell surface glycoprotein CD5, in contrast to wild type mice that express CD5 on only a 

small percentage of B-cells. CD5' B-cells have been associated with autoantibody 

production. To determine the role of CD5 in the development of the inflammatory 

disease in mev/mev mice, we created a stock of CD5-'-mev/mev mice. The longevity of 

CD54mev/mev mice was increased 69% in comparison to mev/mev mice on a similar 

B6;129 background. The increased lifespan was associated with a marked reduction in 

pulmonary inflammation. Flow cytometry analysis of spleen cells from CD5'- mev/mev 

mice at 9 - 12 wks of age revealed significant decreases in percentages of IgMlB220 

double positive B-cells, Mac-11Gr-1 double positivecells and CD4'T-cells compared 

with mev/mev mice. CD5-'- mev/mev mice also had significantly lower serum IgM levels in 

comparison to mev/mev mice. Study of CD5'- mev/mev mice may provide further insight 

' Modified from: Joliat W, Lang PA, Lyons BL, Lynes MA, Yi T, Sundberg JP, Shultz LD. Absence of 
CD5 dramatically reduces progression of pulmonary inflammatory lesions in SHP-1 protein-tyrosine 
phosphatase-deficient viable motheaten mice. J. Autoimmun. In press. 
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into the role of CD5 in cell signaling and may help explain the observed association of 

CD5' B-cells with autoimmune disease. 

Introduction 

Mice homozygous for either of the two recessive allelic mutations in the 

hematopoietic cell phosphatase (Hcph) gene on Chromosome 6 are severely 

immunodeficient, express high levels of serum autoantibodies (250-253) and die at an 

early age from inflammatory lesions in the lungs and elsewhere. The Hcph gene encodes 

the Src homology region 2 (SH2) domain-containing protein tyrosine phosphatase-1 

(SHP-1) (256, 257), which is a negative regulator of signaling through a number of 

hematopoietic growth factor receptors (258, 276, 280). The two mutant alleles of the 

Hcph gene that arose spontaneously in C57BU6J mice are 'motheaten', (Hcphme, 

abbreviated me) and viable motheaten (Hcphm+, abbreviated mev). The me mutation is 

due to a cytosine deletion that results in the total absence of the SHP- 1 protein due to 

creation of a termination codon. Death of me/me mice occurs at approximately 3 wks of 

age. The mev mutation is a thymine to adenine transversion that results in creation of 

alternative splicing sites and an 80% to 90% reduction in SHP-1 activity compared with 

wild type mice. Homozygous mev/mev mice live to approximately 9 wks of age and are 

thus the more commonly used model to study the consequences of deficiency in SHP- 1 

protein tyrosine phosphatase (254). 

In addition to autoimmunity and severe pulmonary disease, meV/mev mice have 

many additional cellular abnormalities, including an increase in myelopoiesis (250, 281) 

and multiple defects in lymphocyte development and function (282-285). A large 
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percentage of B-cells present in mev/mev mice express CD5 (286), which is normally 

found only on T-cells and a small percentage of B-cells in wild type mice. 

CD5 (Ly-1) is a monomeric 67-kD membrane glycoprotein expressed on all 

mature T-cells and on a subset of B-cells, termed B-la cells. Classified structurally as a 

member of the scavenger receptor family (287), CD5 consists of a cysteine rich 

extracellular region and a cytoplasmic domain containing motifs compatible with 

phosphorylation by tyrosine and serinelthreonine lunases (Figure 3.1). CD5 is part of the 

TCR complex. It is expressed at low levels on immature, CD4TD8' thymocytes and is 

upregulated in differentiated T-cells (288). Tyrosine residues within the CD5 

cytoplasmic region are phosphorylated upon TCR stimulation (289). Recently, it was 

reported that CD5 functions as a negative regulator of signal transduction through the 

TCR, affecting thymocyte differentiation as well as mediating TCR signaling in mature 

cells (290-292). CD5 has been found to be constitutively associated with SHP-1 in Jurkat 

T-cells and normal phytohemagglutinin-expanded T-lymphoblasts (274), indicating that 

the negative regulatory role of CD5 in T-cells may be medated through SHP-1. 
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Figure 3.1. Structure of CD5. The extracellular region contains three scavenger receptor 

cysteine-rich domains, while the cytoplasmic region contains motifs compatible with 

SerIThr or Tyr phosphorylation. 

CD5 is associated with the B-cell receptor (BCR) on B-la cells (293). In wild 

type adult mice, cells expressing CD5 constitute a significant percentage of the B-cell 

population in the peritoneal and pleural cavities, while they are scarcely found in the 

splenic B-cell pool (294). Although the function of CD5 on B-cells is poorly understood, 

B-la cells, that express CD5, are associated with production of natural autoantibodies 

(295), specifically of the IgM isotype (296). An increase in the number of B-cells 

expressing CD5 is often associated with increased production of autoantibodies 

(reviewed in (275)). In me/me and mev/mev mice, virtually all of the B-lymphocytes, 

including the splenic populations, express CD5 (297). We theorized that CD5 deletion in 

mev/mev mice would result in reduction of sytemic autoimmunity in these mice. 

CD5 deletion in otherwise wild type mice does not interfere with the ability of 

these mice to mount an efficient immune response (294). T-cells from C D ~ - /  mice are 
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hyperreactive in response to TCR mediated signals in vitro (290), but this increased 

reactivity has no apparent detrimental effect on T-cell function in vivo. Thus, mice 

lacking CD5 are healthy and have normal distribution of lymphoid and myeloid cells. To 

explore the effect that CD5 expression has on the autoantibody production and 

inflammatory disease of viable motheaten mice, we crossed 1 2 9 - ~ d 5 ' ~ ' ~ ~ "  (CD5.') mice 

with C57BLl6J-mevmice to create a stock of mice homozygous for the CD5 deletion and 

segregating for the viable motheaten mutation. Comparison of the phenotypes of mev/mev 

mice with or without CD5 revealed a marked role of this molecule in the development of 

immunopathologic changes in mev/mev mice. 

Materials and Methods 

Mce 

All mice were raised at the Jackson Laboratory (Bar Harbor, ME). 1 29-Cd5tm'Cg" 

(CD5-I-) mice (294) were first crossed with heterozygous C57BU6J-+/mev mice. 

Offspring were heterozygous for CD5-I- and were typed for the presence of the mev 

mutation. Mice that were heterozygous for both the mev mutation and CD~'- were 

intercrossed. Homozygous CD5-I- mice from these matings that were heterozygous for 

the mev mutation were then intercrossed to create a B6; 129-CD54 mev stock in which the 

CD5 null allele was fixed to homozygosity and the mice were segregating for the mev 

mutation. Concurrently, 129P3lJ wild type mice were bred with C57BU6-+/mev mice in 

order to produce mev/mev and +/? control mice on a matched segregating background that 

expressed normal CD5 levels. Mice were typed for the CD5 null allele by PCR, using 

primers for the inserted neomycin resistance gene (neol3: 5'- 
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CPGGGTGGAGAGGCTAIITC-3', neo14: 5'-AGGTGAGATGACAGGAGATC-3'). 

Determination of the genotype at the Hcph locus (mev/mev, +/mev or +/+) was also 

conducted by PCR, using primers flanking the viable motheaten mutation (mev-F: 5'- 

CGTGTCATCGTCATGACT-3', mev-R: 5'-AGGAAGPGGGGCTTTGCCGT-3'). 

Before electrophoresis, the amplification products were digested with RsaI to distinguish 

among +/+, +/mev and mev/mev mice (298). Mice were housed in conventional pathogen- 

free animal facilities (299). 

Histopathology 

Groups of mice from 4 - 18 wks of age were euthanized by CO, asphyxiation. 

Tissues were fixed in Fekete's acid alcohol formalin, embedded in paraffin, and sectioned 

at 6 pm. Slides were stained with Mayer's hematoxylin and eosin (H&E) and Periodic 

Acid Schiff (PAS) for histological examination. Immunohistochemistry was carried out 

on lung and kidney sections using biotinylated rabbit anti-mouse Ig (DAKO, Carpinteria, 

CA) for identification of immune complexes. Non-specific staining was blocked on 

deparaffinized sections with peroxidase blocking reagent (DAKO). Tissues were then 

incubated in primary antibody for 1 h at room temperature in a humidified chamber. 

After three 5 min washes in PBS, tissues were incubated with avidinlhorseradish- 

peroxidase conjugate for 45 min, followed by an additional trio of 5 min washes in PBS. 

Tissues were then incubated in diaminobenzidine (DAB) for 5 min at room temperature 

and washed in tap water for 5 to 15 rnin. Tissues were counterstained with hematoxylin, 

dehydrated in graded ethanol, cleared in xylene, and coverslipped with Permount (Fisher 

Scientific, Pittsburgh, PA). 
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Flow cytometric analysis 

Monoclonal antibodies, conjugated with phycoerythrin, FITC or biotin, were used 

for characterization of spleen cells from 9 - 12 wk-old and 15 - 18 wk-old mice. 

Streptavidin-Red 6-70 was used as a secondary fluorophore for biotinylated antibodies. 

The following antibodies were obtained from PharMingen, Inc. (San Diego, CA): anti- 

CD4, clone RM4-5; anti-pan granulocyte (Gr-1), clone RB6-8C5 (300); anti-Mac-1, 

clone MI170 (301); anti-CD23, clone B3B4 (302,303); anti-CD43, clone S7 (304-306); 

and anti-CD19, clone 1D3 (307-309). Additional antibodies, as follows, were purified 

from hybridoma cell lines as ascites; anti-CD3, clone 145-2C11 (310); anti-CD8, clone 

53-6.72 (31 1,312); anti-IgM, clone R6-60.2; anti-B220, clone RA3-6B2 (313); anti-pan 

macrophage, clone F4180; anti-MHC class I, clone MI142 (314); anti-MHC class Il, clone 

M511 14 (315); anti-pan erythrocyte, clone Terl19 (316); and anti-CD5, clone 53-7.3 

(31 1,312). Single cell suspensions were prepared from individual spleens by extrusion 

of cells through Nytex 110 mesh bags (TETKO Inc., Elmsford, NY) into cold HBSS 

containing 5% FBS and 0.1% sodium azide. Erythrocytes were lysed in buffered 

ammonium chloride, and leukocyte populations were phenotyped as previously described 

(297) using a FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA). B-1 B- 

cells were identified by labeling cells with antibodies against IgM, CD19, and CD43. 

Cells that were I ~ M ~ ~ ~ ,  CD19+, CD43+ were considered B-1 B-cells (3 17, 31 8). 
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Ig levels 

Levels of IgM, IgGl, and IgG3 in serum from 9 - 12 wk-old individual mice were 

assayed by ELISA as previously described (297). Plates were coated with goat anti- 

mouse isotype specific antibody (Southern Biotechnology Associates, Birmingham, AL). 

Alkaline phosphatase labeled goat anti-mouse K-chain (Southern Biotech) was used as 

the detection antibody. Isotype specific standards (PharMingen) were run with each 

assay. Plates were developed with p-nitrophenyl phosphate (Sigma Chemical Co., St. 

Louis, MO) and read with the EL 3 12e Bio-Kinetics Reader (Bio-Tek Instruments, 

Winooski, VT). Ig levels were determined from the standard curves. 

Autoantibody determinations by ELISA 

Circulating autoantibodies against histone proteins were determined using a 

modification of a protocol described by Amoura et al. (319). In brief, individual wells of 

96 well microtiter plates were first coated with 100 p1 of 2 pg/pl calf thymus histone 

protein (Type IIS, Sigma) in PBS for 1 h at 37°C. The wells were then washed in an 

automated microplate washer with PBS containing 0.25% Tween 20 (PBSIT~O), and then 

blocked with 200 p1 PBS containing 1% BSA for 1 h at 37°C. The wells were washed, 

and 100 p1 of each serum dilution was added to the appropriate wells. After incubation 

for one additional hour at 37"C, the wells were washed three times, and then 100 pl of a 

previously titered goat anti-mouse IgG (H+L)-alkaline phosphatase conjugate was added 

to each well. Following incubation at 37°C for 1 h, the plates were washed, and then 100 

p1 substrate (p-nitrophenyl phosphate, Sigma) dissolved at 1 mg/ml in diethanolamine 

substrate buffer was added to each well. The rate of substrate conversion to colored 
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product at 37°C was monitored at 405 nm and recorded as mODImin. Autoantibodies 

against double stranded DNA were detected according to a modification of a protocol 

described by Zouali et al. (320). In brief, microtiter wells were coated with calf thymus 

DNA at 10 pg/ml in TBS (10 mM Tris base, 150 mM NaCI, pH 7.4) for 2 h at room 

temperature. Following this incubation, the plates were washed with PBS/T20 in an 

automated microplate washer, and then processed as described above. 

Hematology 

Blood was collected from the retro-orbital sinus using heparinized capillary tubes. 

Leukocytes and erythrocytes were counted using a model ZBI Coulter counter (maleah, 

FL). Mean corpuscular volumes (MCVs) were calculated from the packed red cell 

volumes and total RBC counts as previously described (250). Blood smears were stained 

with Wright-Giemsa (Sigma) for examination of cells for morphological abnormalities. 

Reticulocytes were counted using the ADVIA 120 Hematology system (Bayer Corp, 

Tarrytown, NY). Confirmation of reticulocyte percentages was conducted manually 

following staining with New Methylene Blue (NMB) stain (Mallinckrodt Baker Inc., 

Phillipsburg, NJ). Equal amounts of blood and stain were incubated together in a 

capillary tube for 15 min and smears were prepared. The smears were then air-dried and 

coverslipped with Permount (Fisher). 

Spleen cell lysates and immunoblotting 

Spleens were dissected from mutant and control mice at 5 - 8 wks of age and at 

12 - 15 wks of age. Single cell suspensions were prepared after lysis of red blood cells 
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following established procedures (321). For irnrnunoblotting, the spleen cells were lysed 

at 4°C for 30 min in cold lysis buffer (20 mM Tris, pH 7.4; 1 mM EDTA; 10% glycerol; 

1% Triton X-100; 100 mM NaCl; 1 pg of leupeptin per ml; 1 pg of aprotinin per ml; 1 

mM bezarnidine and 5 mM of iodoacetic acid). Cell lysates were clarified by 

centrifuging for 10 min at 10,000g at 4" C. Protein levels were measures using the DC 

Protein Assay (Bio-Rad, Hercules, CA). 20 pg of each sample was resolved in a 12.5% 

SDS-PAGE gel and transferred to a nitrocellulose membrane (Schleicher & Schuell, 

Dassel, Germany). The membranes were probed, as described previously (322), with 

monoclonal antibody against phosphotyrosine (4G10, Upstate Biotechnology Inc., Lake 

Placid, NY). Specific antibody signals were detected using an enhanced 

chemiluminescence kit (ECL, Amersham Pharmacia Biotech, Uppsala, Sweden). 

Bone marrow macrophage cultures 

Bone marrow plugs from femurs and tibias were harvested by extrusion with cold 

HBSS. Marrow plugs were disrupted by passage through a 25g needle. The resulting 

single cell suspensions were washed 2x in sterile HBSS (Sigma), counted with a model 

ZBI Coulter counter and resuspended in complete media (RPMI-1640 (Sigma) containing 

2 mM L-glutamine, 10% FCS, 100 Ulml penicillin and 100 pglml streptomycin). A total 

volume of 5 ml medium containing lo6 cellslml was added to 25 cm2 tissue culture flasks 

with either 500 or 1000 unitslml of recombinant human (rHu) CSF-1 (Cetus) or 

recombinant murine (rMu) GM-CSF (R&D Systems, Minneapolis, MN). Cultures were 

incubated at 37°C in 5% CO, for 24 h to allow adherent cells to attach to the flask. The 

non-adherent cells were transferred to duplicate flasks and cultured for 7 days with 
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periodic changes of media, maintaining the appropriate growth factor concentrations. To 

recover adherent cells from flasks, medium containing any non-adherent cells was 

removed and transferred to 50 ml tubes. The remaining adherent cells were washed 2x 

with 10 ml warm HBSS, then incubated for 10 min with 10 ml2mM EDTAIPBS at 37OC. 

Cultures were vigorously shaken to detach all adherent cells. The adherent cells were 

then combined with the non-adherent cells in 50 ml tubes, washed 2x in HBSS and used 

for FACS analysis as previously described. Preliminary FACS analysis of adherent and 

non-adherent cells separately showed that they had similar staining profiles. In 

subsequent FACS analyses, adherent and non-adherent were combined to increase the 

numbers of cells available for analysis. 

Statistics 

All measures of variance are presented as SEM. Student's t tests were performed 

to determine significance of difference of means. Significance was assumed for p values 

< 0.05. 

Results 

Longevity 

Thirty five B6; 129-CD5" mev/mev mice and an equal number of B6; 129-mev/mev 

mice were monitored daily from three weeks of age (Figure 3.2). There was no 

significant effect of gender on survival of these mice. The mean lifespan of B6;129- 

CD5-I- mev/mev mice (162 +I- 10 d) was significantly increased in comparison to B6;129- 

mev/mev mice, which had a mean lifespan of 89 +I- 8 d (p<0.0001). Our previous studies 
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revealed that C57BL6-mev/mev mice had a mean lifespan of 61 +/- 2.4 d (250), indicating 

an effect of strain background on lifespan of these mice. All subsequent data compares 

mev/mev mice, CDFL mev/mevmice and wild type +/+ controls on the B6;129 segregating 

background. Although lifespan data has not been gathered on wild type B6;129 mice, the 

average lifespan of C57BU6J mice is 800 days for males and 750 days for females (323). 

Figure 3.2. Cumulative percent survival of B6; 129-mev/mev and B6; 129-CD5-I- mev/mev 

mice as a function of age. Thirty-five male or female mice from each genotype were 

monitored from 3 wks of age. 
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Immunopathology 

In order to determine the effect of the CD5 null allele on the onset and progression 

of the characteristic pathologic lesions of mev/mev mice, total necropsies were performed 

on mutant (CD54 mev/mev and mev/mev) and control (CD5+ +I? and +I?) mice. All tissues 

were examined histologically with a pathologist (J.P.S.) (324). Several striking 

differences were noted in B6;129-CD5+ mev/mev mice when compared to B6;129-mev/mev 

mice. 

Development of pulmonary lesions was significantly delayed in CD5-L mev/mev 

mice in comparison to mev/mev mice. At 9 wks of age, this difference was evident grossly 

at the time of necropsy. Lungs of mev/mev mice were mottled tan in color and firm, while 

lungs of CDSJ- mev/mev mice resembled the lungs of wild type mice and were compliant 

and evenly light pink in color. Histologically, the mev/mev mice developed earlier 

acidophilic macrophage pneumonia (325,326), which progressed in severity more 

rapidly than in CDSL mev/mev . Moderate disease was evident by 4 wks of age in mev/mev 

mice and pneumonia was severe by 9 wks. Pulmonary lesions were minimal or absent in 

CDYL mev/mev mice at 4 wks of age, and by 9 wks of age, only mild peribronchiolitis or 

pneumonitis was observed (Figure 3.3). By 21 wks of age, most CD5-I- mev/mev mice 

developed mild to moderate acidophilic macrophage pneumonia, while one CD5'- 

mev/mev mouse necropsied at 43 wks of age had only mild pulmonary disease (data not 

shown). 

Spleens in CD5-/ mev/mev mice were markedly enlarged. Spleen weight expressed 

as a ratio of spleen to body weight (S:BW) was increased 42% in CDYL mev/mev mice in 

comparison to mev/mev mice (p<0.05) at 9 wks of age. The S:BW of mev/mev mice at 9 
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wks of age was increased almost 7 fold over a control group of +/+ and +/? mice 

combined (data not shown). The S:BW of both CD5" mev/mev mice and mev/mev mice 

increased with age from 5 - 18 wks, while in +/? and CD5" +/? mice, this ratio did not 

change considerably with age. The spleens in CDFL me'/mev mice at 9 wks of age had 

poorly defined follicles and contained numerous multinucleated giant cells with abundant 

cytoplasm. While the splenic follicles of mev/mev mice were poorly delineated, the 

spleens lacked the extensive granulomatous lesions, consisting of multinucleated giant 

cells, found in CD5-I- mev/mev mice (Figure 3.4). With increasing age, multinucleated 

giant cells in CD5+ mev/mev mouse spleens became even more abundant, while the 

relative number of these cells in spleens of mev/mev mice increased only slightly. 

The livers in CD5'- mev/mev mice showed marked extramedullary myelo- and 

erythropoiesis at 9 wks of age. In contrast, the livers in mev/mev mice exhibited only mild 

extramedullary hematopoiesis (EMH), mostly myeloid in nature (Figure 3.5). By 16 wks 

of age, EMH in livers of CD5% mev/mev mice had increased considerably, while EMH in 

livers of mev/mev mice remained mild to moderate (data not shown). 

CD5'- mev/mev mice did not develop hyperplasia of the non-glandular stomach, a 

feature commonly seen in mev/mev mice at 9 wks of age (Figure 3.6 A). Inflammation of 

the glandular stomach was observed in both CD5" mev/mev mice and mev/mev mice. Renal 

glomeruli of CD5" mev/mev mice were enlarged and increased in cellularity at 9 wks of 

age, suggesting a mild membranoproliferative glomerulonephritis. The mev/mev mice 

exhibited glomerulonephritis, but the condition was less severe (Figure 3.6 B). Immune 

complexes were detected in the glomeruli of both CD5'- mev/mev and mev/mev kidneys by 

PAS staining and by immunohistochemistry using anti-mouse Ig (data not shown). 
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Blood urea nitrogen (BUN) levels were not significantly elevated in either CDSJ- mev/mev 

or mev/mev mice ranging from 6 to 12 wks of age (data not shown). 
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Figure 3.3. Photomicrographs of lung of CD~-I- mevlmev mice. Lung shows severe 

eosinophilic macrophage pneumonia in mevlmev mice, in contrast to minor peribronchiolar 

aggregation of lymphocytes in CD5-I- mevlmev mice and normal appearance in +/mev control 

mice. Tissue sections are from 62-64 day old B6; 129 mice. All tissues were fixed in 

Fekete's acid alcohol formalin and stained with hematoxylin and eosin. 
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Figure 3.4. Photomicrographs of spleen of CD5-I- mev/mev mice. Spleens of mev/mev and 

~ D 5 - l -  mevlmev mice have poorly defined lymphoid follicles that are markedly depleted of 

lymphoid cells. Spleens of CD5-I- mevlmev mice contain many multinucleated giant cells 

(arrows) that are not present in mevlmev spleens. In +/mev mice, spleens reveal well-developed 

follicles. Tissue sections are from 62-64 day old B6;129 mice. All tissues were fixed in 

Fekete's acid alcohol formalin and stained with hematoxylin and eosin. 
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Figure 3.5. Photomicrographs of liver of CD5-'- mevlmev mice. Livers of mevlmev mice 

exhibit mild extrarnedullary hematopoiesis, mostly myeloid in nature. In contrast, high 

levels of extramedullary myelo- and erythropoiesis are evident in livers of CD5'- meVhev 

mice. The +/mev livers appear normal. Tissue sections are from 62-64 day old B6;129 

mice. All tissues were fixed in Fekete's acid alcohol forrnalin and stained with hematoxylin 

and eosin. 
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Figure 3.6. Photomicrographs of kidney and stomach of C D ~ "  mevlmev mice. A) Renal 

glomeruli of CD5-L mevlmev mice are enlarged and increased in cellularity, suggesting of a 

mild membranoproliferative glomerulonephritis. The mevlmev mice show less severe 

glomerulonephritis. B) Hyperplasia of the non-glandular stomach commonly seen in mevlmev 

mice is not present in CD~-I -  mevlmev mice. Tissue sections are from 62-64 day old B6; 129 

mice. All tissues were fixed in Fekete's acid alcohol formalin and stained with hematoxylin 

and eosin. 
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Flow cytometry analyses of cell ~opulations 

The observed splenomegaly in CD5& mev/mev and mev/mev mice was accompanied 

by a significant increase in total numbers of nucleated cells in the spleen in comparison to 

CDSd +I? and +I? mice, respectively (pd.05). Average numbers of nucleated 

splenocytes in CDSJ- mev/mev were increased in comparison to mev/mev mice, but the data 

were not statistically significant. An elevation in the number of splenic myeloid cells 

contributes to the splenomegaly observed in mev/mev mice (250). While an increase in 

ratio of spleen weight to body weight (S:Bwt) was observed in CD5-I. mev/mev mice in 

comparison to mev/mev mice, the reduction in severity of acidophilic macrophage 

pneumonia observed in CD5-I- mev/mev mice suggested a general decrease in myeloid 

cells numbers. To determine the proportions of cell populations present in the spleens of 

CD5& mev/mev mice, flow cytometric analysis was performed. 

Percentages of splenic Mac-1' Gr-1' monomyeloid cells were significantly 

reduced in CD5-/ mev/mev mice compared to mev/mev mice, as were percentages of IgM' 

B220' B-cells and CD3' CD4'T-cells (Table 3.1). However, CD5" mev/mev mice had a 

significant increase in percentages of splenic Terl19' erythrocyte precursor cells 

compared to mev/mev mice, suggesting that the augmented splenomegaly in CDSJ- 

mev/mev mice is a result of an increase in erythropoiesis. 
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Table 3.1. Flow cytometry analyses of spleen cells from 9 - 12 wk-old B6,129-CD5" 
mev/mev mice. - 

B6;129 B6;129 B6;129 B6; 129 
Cell Population 

mev/mev CD5-I- mev/mev +/? CD5'- +/? 

B- 1 cellst (as % of 
total B-cells) 

Ter 1 19' 12.6 _+ 2.9 56.2 f 7.8* 2.2 f 1.1 2.2 f 0.8 
- -- - -- - 

Data are expressed as a mean percent f SEM {n = 6 for B6;129-CD5& mev/mev; n = 5 
for B6;129-mev/mev; n = 4 for ~6;129-CD~"' +/? and B6;129-+/? ) {t B-1 cells were 
identified as I~M'@", CD19', CD43') { *  indicates significant (p < 0.05) difference in 
spleen cell populations between CD5'- mev/mev and mev/mev mice) 

Mean # of 
nucleated spleen 3.4 f 0.6 4.4 f 0.7 1.7 f 0.3 1.1 f 0.1 
cells x lo8 

To determine whether CD5 is necessary for development of B-1 cells, percentages 

of these cells were determined using antibodes against IgM, CD43, and CD19. 

Percentages of IgM' B220' B-cells that had a B-1 phenotype did not vary significantly 

between C D 9  mev/mev mice and mev/mev mice (Figure 3.7), indicating that CD5 

expression is not required for development of the B-1 cell population. 
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Figure 3.7. Flow cytometry analysis of B-1 B cells in spleens of CDYL mev/mev, 

mev/mev, and +I? mice. Panels on the left show percentage of IgM' cells. Panels on the 

right show percentage of I g M ~  cells that are CD43'1CD23-, an expression pattern 

characteristic of B-1 B cells. 

Total nucleated cell numbers in the spleen did not change significantly with age in 

CD5'- mev/mev, mev/mev, CDS4 +I? or +I? mice. The only significant change in 

percentages of spleen cell populations in CD5+ mev/mev with age was a decrease in the 
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percentage of Mac-1' Gr-1- cells (p<0.05) in 15 - 18 wk-old mice in comparison to 9 - 

12 wk-old mice (data not shown). In contrast, several significant differences were seen 

when comparing spleens from 9 - 12 wk-old mev/mev mice to spleens of 15 - 18 wk-old 

mev/mev mice. Percentages of CD3' CD4' T-cells, Mac-1' Gr-1' cells and IgM' B220' B- 

cells were lower in 15 - 18 wk-old mev/mev mice when compared to 9 - 12 wk-old 

mev/mev mice (p<0.05), while the percentage of Terl19' cells was increased (p<0.01) 

(data not shown). 

Peripheral blood analysis 

Analysis of reticulocyte levels in peripheral blood using the Advia 120 

Hematology Analyzer showed a significant increase in reticulocyte percentages in CD5-'- 

mev/mev mice when compared to mev/mev mice (p<0.05) (Table 3.2). Reticulocyte 

percentages of both mev/mev and CD5" mev/mev mice were significantly higher than in 

wild type controls (p<0.05). Reticulocytes were also examined in smears of blood 

stained with NMB, as described (Figure 3.8). This data reflects the results found using 

the Advia 120 Hematology Analyzer. % 
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Fignm 3.8. New methylene blue (NMB) staining for reticulocytes. Reticulocytes 

contain RNA, which precipitates in NMB and is stained blue. Reticulocytes have discernible 

blue granules (arrows). A manual reticulocyte count may be done by counting red cells in 

a smear of new methylene blue stained blood and calculating the percentage of total red 

cells that contain blue granules (reticulocytes). 
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In contrast to reticulocyte numbers, peripheral blood red cell numbers were 

significantly reduced in both CD5-/ me'/mev and mev/mev mice in comparison to wild type 

(+/+ and +/?) controls at 9 - 12 wks of age ( ~ ~ 0 . 0 5 ) .  Although there was a significant 

increase in numbers of Ter-119' splenic nucleated erythroid cells in CDYL me'/mev mice 

in comparison to mev/mev mice (Table 3.1), there was not a corresponding increase in 

peripheral erythrocyte counts in CD5" mev/mev mice (Table 3.2). Moreover, there were 

no significant differences in peripheral erythrocyte or leukocyte counts between CD5'- 

mev/mev and mev/mev mice, although the average erythrocyte and leukocyte numbers as 

well as hematocrit percentages were slightly lower in CD5-I- mev/mev mice in comparison 

to mev/mevmice. Hematocrit percentages of mev/mev mice were lower on average than 

those of wild type (+/+ and +/?) mice, but the difference lacked statistical significance 

by a small margin (p = 0.055). Although the decrease in hematocrit percentages of CD5'. 

mev/mev versus mev/mev mice was also not statistically significant, CD5'- mev/mev mice 

did have significantly lower hematocrits than +/+ or +/? mice (p<0.0001). Erythrocyte 

mean cell volumes (MCV) did not differ significantly in any of the genotypes studied 

(data not shown). Peripheral blood leukocyte numbers were comparably increased in 

both CDFL mev/mev mice and mev/mev mice compared to wild type controls. The majority 

of these cells were monocytes and granulocytes (data not shown). There was no 

significant difference in either leukocyte or erythrocyte numbers in CD5-I- +/? mice 

versus wild type +/? mice. 
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Table 3.2. Peripheral blood analysis of 9 - 12 wk-old CD5-'- mev/mev mice. 

B6;129 
B6;129 
CD5'- 

B6; 129 B6; 129 
Cell Population 

mev/mev +/? CD5'- +/? 
mev/mev 

Erythrocytes 
7.0 f 0.6 6.4 f 0.4 9.3 f 0.8 9.7 f 0.7 

(x lo9 cellslml) 

Leukocytes 
16.6 f 3.0 14.2 It 2.0 7.5 f 0.8 9.1 f 1.4 

(x lo6 celldml) 

Hematocrit (%) 44.0 f 2.8 39.4 f 1.4 50.3 f 1.5 51.5 It 0.7 

Reticulocytes 
(as % of total 17.3 f 4.5 30.3 f 5.2* 2.9 f 0.1 2.8 f 0.2 
red blood cells) 

Data are expressed as stated f SEM (n >3 for reticulocyte percentages; n > 6 
for all other assays.) { *  indicates significant (p < 0.05) difference in peripheral 
blood cell populations between CD5'- mev/mev and mev/mev mice} 

Serum I? levels 

B-cells in mev/mev mice are hyperresponsive to stimulation through the B-cell 

receptor (BCR) (327). This hyperreactivity to BCR mediated signals in the absence of 

SHP-1 helps explain the otherwise counter-intuitive observation that serum levels of IgM 

and IgG in mev/mev mice are significantly higher than in wild type mice, whde their 

mature B-cell numbers are reduced. Since CD5'- mev/mev mice have significantly fewer 

B-cells than mev/mev mice, we assayed serum Ig levels in CD5" mev/mev and control mice 

(Figure 3.9). 
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Figure 3.9. Serum immunoglobulin levels. Levels of serum IgM are significantly 

reduced in CD5-'- mev/mev mice in comparison to mev/mev mice (p<0.05). Absence of CD5 

did not result in a significant reduction of IgGl levels or IgG3 levels in CD~'- mev/mev 

mice in comparison to mev/mev mice. CD5" +/? mice showed a consistent reduction in Ig 

levels in comparison to wild type (+/?) mice. However, the difference was only 

statistically significant when comparing IgGl levels of CD54 +/? mice versus +/? mice 

with intact CD5. 

IgM levels were increased over 30 fold in mev/mev mice when compared with wild 

type (+/+ and +/me") mice. In C D ~ "  mev/mev mice, IgM levels were 70% lower than in 

mev/mev mice but still almost 10 fold higher than in wild type (+/+ and +/me") mice. 

Although previous reports have indicated that serum IgGl levels in C57BU6J-mev/mev 

mice are not significantly elevated over normal while serum IgG3 levels are significantly 

elevated in comparison with littermate controls (297), we found the opposite in our 
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studies. IgGl levels were 2.5 times higher in the serum of mev/mev mice than in +/? 

litterrnates. These levels were lower in CD5" mev/mev mice than in mev/mev mice, but the 

change was not statistically significant. No significant variation was observed in IgG3 

levels between mutant and control mice. 

It is interesting to note that levels of IgGl were significantly reduced in CDSJ- +/? 

mice in comparison to +/? mice with a functional CD5 gene. Production of IgGl is T- 

cell dependent and CD5 expression by T-cells may be required to induce class switching 

or secretion of IgGl. Levels of IgM aid IgG3 were lower in CD5" +/? compared with 

+/? mice, but the differences were not statistically significant. 

Autoantibody assays 

To assess the presence of autoantibodies in CDS1 mev/mev and mev/mev mice, 

serum levels of anti-double stranded DNA (anti-dsDNA) and anti-histone antibodies were 

assayed by ELISA (Figure 3.10). Levels of these autoantibodies were elevated in the 

serum of both C ~ 5 - l -  mev/mev and mev/mev mice, when compared to wild type (+/+ and 

+/me? controls. In contrast to IgM levels, that were significantly reduced in CD5-I. 

mev/mev mice when compared to mev/mev mice, levels of both anti-dsDNA and anti- 

histone antibodies did not vary significantly between CD5-/- mev/mev and mev/mev mice. 

Levels of anti-histone and anti-dsDNA antibodies in CD5'- +/? mice showed no variation 

from +/+ and +/mev controls. 
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Figure 3.10. Autoantibody determination by ELISA. Data is expressed as an average 

rate of substrate conversion in mO.D./min f SEM (n=4). 

Anti-phosphotyrosine western blotting 

Variation in levels of tyrosine phosphorylation between two experimental samples 

can indicate a possible alteration in cell signaling. In order to explore whether the 

pathological changes observed in CD5" mev/mev mice compared with mev/mev mice were 

accompanied by a difference in tyrosine phosphorylation, we examined total splenic 

protein by anti-phosphotyrosine western blotting (Figure 3.1 1). Spleen cell lysates were 

analyzed from mice at 12 - 15 wks of age as well as from mice at 5-8 wks (data from 

younger mice not shown). In mev/mev mice at 12 - 15 wks of age, there was an increase 

in tyrosine phosphorylation of proteins in the range of 28 - 45 kd. Highly 

phosphorylated proteins in this range were not seen in CD5'- mev/mev mice of any age, 

nor were they seen in younger mev/mev mice. 
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Figure 3.11. Characterization of tyrosine phosphorylation of proteins in spleen cell 

lysates. Spleen cell lysates from male C57BU6J-CD5'- mev/mev and C57BU6J-mev/mev 

mice at 4 months of age were analyzed by SDS-PAGE/immunoblotting with anti- 

phosphotyrosine antibody. The positions of protein size markers (kDa) are indicated on 

the left. Arrows indicate bands that exhibit enhanced tyrosine phosphorylation in . 

C57BU6J-mev/mev mice in comparison to C57BU6J-CD5" mev/mev mice. 

Bone marrow macrophage cultures 

Further support of the hypothesis that CD5 on macrophages plays a role in the 

development of the macrophage pneumonia seen in mev/mev mice required confirmation 

of the presence of CD5 directly on macrophages. Takahashi et al. (328) reported 

development of CD5 expression on macrophages in cell cultures grown with CSF-1 or 
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GM-CSF. To verify this, we established cultures of bone marrow cells from C57BU6J- 

mev/mev mice as well as from C57BU6J-+/? Controls and from C57BU6J-CD5-'- mice. 

Cultures were grown in the presence of either Rhu-CSF-1 or Rmu-GM-CSF. Adherent 

and non-adherent cells from cultures had similar cell surface marker expression profiles 

and were pooled for analysis. Flow cytometric analysis revealed that both C57BU6J-+/? 

And C57BU6J-mev/mev bone marrow contained cells that expressed CD5 after 7 days of 

culture with either 500 or 1000 units per rnl of CSF-1 or GM-CSF (Figure 3.12). There 

was no difference in percentages of CD5' cells with various amounts of cytokine, so 

results were pooled. Table 3.3 shows the mean results of three separate experiments. 

Following stimulation with GM-CSF, >90% of bone marrow cells that expressed CD5 

were found to co-express Mac-1. Bone marrow from CDSJ- mice grown under similar 

conditions, as expected, did not express CD5. Under all conditions, Gr-1 was expressed 

on 4 .3% of CD5' cells, and <0.9% of CD5' cells expressed CD19 or CD3. 

Table 3.3. Flow cytometry analysis of bone marrow cultures. - 
Cytokine CSF- 1 GM-CSF 

Genotype +/? mev/mev +/? mev/mev 

% of total cells that are 
CD5' 

6.1 & 1.1 5.6 2- 0.9 4.0 + 2.7 9.7 + 2.7 

% of CD5' cells that are 
Mac-1' 

Data are expressed as a mean percent + SEM. (n > 5) (* indicates significant 
(p-cO.01) difference in % of CD5' cells expressing Mac-1 between mev/mev cultures 
grown with GM-CSF and +I? cultures grown with GM-CSF as well as +I? and mev/mev 
cultures grown with CSF-I.) 
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Figure 3.12. Expression of CD5 on bone marrow cells grown in culture for 7 days with 

1000 units per rnl GM-CSF. Top panel shows expression of CD5 on mev/mev cells, 

bottom panels shows lack of CD5 expression on CD5-'- cells. Dead cells were gated out 

using propidium iodide exclusion. Live cells were analyzed for CD5 expression. 

Numbers shown are percentages of CD5' cells. 
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Discussion 

This study focused on the role of CD5 in imrnunopathologic changes in mev/mev 

mice. Absence of CD5 expression in mev/mev mice resulted in significantly increased 

lifespan and numerous phenotypic changes in comparison to mev/mev mice with an intact 

CD5 gene. Although a significant decrease in serum IgM levels was seen in CD5'- 

mev/mev mice, this was not associated with reductions in autoantibodies against dsDNA or 

histone proteins, two autoantibodies frequently elevated in mev/mev mice. The increased 

longevity of CD5" mev/mev mice was, however, associated with a marked delay in 

development of acidophilic macrophage pneumonia in these mice when compared to 

mev/mev mice. The reduced levels of macrophage infiltration in the lungs of CD5-'- 

mev/mev mice were associated with a significant decrease in myeloid cell numbers in the 

spleen. Although the reduced acidophilic macrophage pneumonia may be a consequence 

of altered interactions of B- or T-cells with myeloid cells due to the absence of CD5 on 

the surface of the lymphocytes, mature B- and T-cells are not necessary for the 

development of pulmonary inflammation in viable motheaten mice (329). Thus, the 

absence of CD5 function alone in either B- or T-cells would be unlikely to lead to such 

dramatic reduction of lung lesions as well as reduced myeloid cell populations in CD54 

mev/mev mice. 

Recently, CD5 has been found to be constitutively expressed on a population of 

macrophages in mev/mev mice (281). CD5' macrophages can be induced in the peritoneal 

cavity of wild type mice by treatment with high levels of GM-CSF. This cytokine is 

elevated in peritoneal fluid of mev/mev mice (328), and myeloid cells from mev/mev mice 

show enhanced signaling through the GM-CSF receptor (276). Our observation that 
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CD5'- mev/mev mice have reduced numbers of splenic myeloid cells and less severe 

myeloid cell mediated pulmonary lesions compared with mev/mev mice may indicate a 

role for CD5 in response of cells to myeloid growth factors such as GM-CSF. We 

confirmed the development of CD5' macrophages in cultures of bone marrow from both 

mev/mev and wild type mice supplemented with either GM-CSF or CSF- 1, providmg 

support for the hypothesis that CD5 expression is involved with development or 

activation of macrophages through myeloid growth factor receptors. Although bone 

marrow cells from CD5-'- mice grown in culture with GM-CSF or CSF-1 lacked CD5 

expression, myeloid cell antigen (Mac-1 and Gr-1) expression profiles on these bone 

marrow cells were similar to cells from mice with an intact CD5 gene (data not shown). 

Additionally, no quantifiable or qualifiable differences were apparent in colony assays of 

bone marrow cells from CD5'- mev/mev mice or mev/mev mice grown in methylcellulose 

media with either CSF-1 or GM-CSF (data not shown). This data suggests that CD5 may 

play a role in later stages of myelopoiesis. 

For many years, the presence of a common progenitor for B-cells and 

macrophages has been suggested (330-333). Reports of biphenotypic Blmacrophage 

cells have appeared in current literature (334-336) and CD5' B-cells have been shown to 

develop macrophage characteristics (337,338), often in association with B-cell 

malignancy (339,340) (reviewed in (333)). It has been shown that treatment of wild type 

mice with GM-CSF resulted not only in an increase in numbers of CD5' macrophages, 

but also in an elevation in numbers of CD5' hematopoietic progenitor cells and CD5' B- 

cells (328), supporting the presence of a common precursor for CD5' (B-la) B-cells and 

CD5' macrophages. Lack of CD5 on biphenotypic Blmacrophage cells or on 
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macrophages believed to have evolved from B-1 B-cells may contribute to the reduced 

severity of lung lesions seen in CD54 mev/mev mice in comparison to mev/mev mice. CD5 

expression may play a role in lineage commitment, possibly through altering responses to 

growth factors as suggested above. 

There are three reported ligands for CD5 that are expressed on B-cells. These 

ligands include CD72, CD5 ligand, and cell surface Ig. Interactions between CD5 and 

these ligands are thought to play a role in communication between T and B-cells. CD72 

is expressed constitutively on B-cells (341,342), while CD5 ligand (CDSL, gp40-80) is 

expressed on activated B lymphocytes in the spleen (343) and is constitutively expressed 

on peritoneal B-cells and B lymphoma cell lines (344). Poposil et al. (345) suggested 

that CD5 can also interact with certain sequences in the V, framework of cell surface Igs. 

Ligation of T-cell surface CD5 to gp40-80 on B-cells has been implicated in the 

stimulation of B-cell proliferation through the gp40-80 receptor (344). 

Until recently, CD5 ligands were reported to be present only on B-cells. 

However, several studies have now provided evidence that CD5 ligands are present on a 

variety of cell types in addition to B-cells, indicating that the interaction of CD5 with its 

various ligands may play a more diverse role in cellular communication than is currently 

thought. Agostini et al. reported the presence of CD72 on alveolar macrophages isolated 

from human sarcoidosis patients (346). A recombinant soluble protein based on the 

human CD5 extracellular region has been reported to bind to a variety of cells of myeloid 

as well as lymphoid origins (347), indicating the presence of a novel, widespread CD5 

ligand. Just as CD5'B-cells also express CD72, it is possible that a CD5 ligand is 

expressed on certain monomyeloid cells and that it may play a role in the activation of 



www.manaraa.com

these cells through binding with CD5. Alternatively, interaction of CD5 with an 

unknown ligand could be involved in adhesion of monomyeloid cells to other cell types. 

The extracellular region of CD5 is closely homologous to that of CD6 (348), a scavenger 

receptor family member involved in cell-cell adhesion through its ligand, CD166 

(ALCAM) (349, 350). Interactions of CD5 with as yet unidentified ligands may be 

responsible for accumulation of macrophages in the lungs of motheaten mice due to 

dysregulated adhesion rather than solely dysregulated proliferation of pulmonary 

macrophages. 

Red cells and mature myeloid cells arise from a common multipotential precursor, 

termed CFU-GEMM based on the ability of these progenitor cells to form granulocyte, 

erythroid, monocyte, and megakaryocyte colonies in culture in response to the 

appropriate cytolunes. CFU-GEMMs can differentiate into either erythroid burst forming 

units (BFU-Es) in the presence of erythropoietin (Epo), or into granulocyte/macrophage 

colony forming units (CFU-GMs) in the absence of Epo but in the presence of myeloid 

growth factors such as GM-CSF. Spleens of mev/mevmice have previously been reported 

to contain high numbers of CFU-GMs in comparison to wild type mice, while the 

frequency of CFU-GMs in the bone marrow is similar in mev/mev and wild type mice 

(282). SHP-1 is involved in the negative regulation of Epo mediated signals (351). Both 

bone marrow and spleens of mev/mev mice contain increased numbers of erythroid 

precursors (CFU-Es) in comparison to wild type controls. CFU-Es from mev/mev mice 

are hyperresponsive to Epo and a subpopulation of mev/mev CFU-Es has lost their 

dependence on exogenous Epo (282). The increase in red cell precursors with a 

corresponding decrease in relative numbers of granulocytes in spleens of CD5" mev/mev 
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mice versus mev/mev mice suggests the possibility that CD5 plays a significant role in the 

myeloid differentiation pathway in the absence of SHP-1. Dysregulated Epo signaling 

resulting from the absence of SHP-1 accompanied by insufficient myeloid growth factor 

mediated signals in the absence of CD5 could potentially explain the apparent shift from 

myelo- to erythropoiesis observed in CD5-l mev/mev mice in comparison to mev/mev mice. 

The lack of CD5 may cause changes in lineage commitment in the myeloidferythroid 

branch of cellular development as a result of a reduced response to myeloid growth 

factors. 

Although CD5 has been reported to be a negative regulator of signaling through 

both the T-cell receptor (290) and the B-cell receptor (352), earlier studies indicated a 

costimulatory role for CD5 in TCR signal transduction (3 53-355). Recently, additional 

studies have corroborated the reports of CD5 providing positive signals in both B- and T- 

cells, through a distinct cascade of second messengers including acidic sphingomyelinase 

and protein b a s e  C-4 (356). Our finding that proteins in the range of 28 - 45 kd 

showed increased phosphorylation on tyrosine residues in spleens of older mev/mev mice 

but not in CD5& mev/mev mice of the same age may provide additional evidence of a 

significant role in signaling for CD5. In the absence of the negative regulatory effects of 

SHP-1, the signals conveyed through CD5 may result in the phosphorylation of one or 

more novel signaling molecules in the 28 - 45 kd range. Identification of these 

molecules could help further elucidate the relationship between CD5 and SHP-1 and 

facilitate the resolution of the pathways in which these molecules interact. 

Clear examination of the role of CD5 in the development of viable motheaten 

pathological lesions is problematic on the B6;129 segregating background. A 



www.manaraa.com

polymorphic variation between 129 and C57BU6J linked to the CD20 (Ms4a2) gene, 

which maps near the CD5 locus, has been shown to affect peritoneal B-1 cell populations 

(357). Although the phenotypic differences observed in B6;129-CD54 mev/mev mice in 

comparison to B6;129-mev/mev mice do not appear to be related to reduced B-1 cell 

numbers alone, the effect of strain specific polymorphisms is an important consideration 

in analyzing any targeted mutation on a segregating background. 

We have recently completed backcrossing of the CD5 mutation on to the 

C57BL16J background (to NlO) and have developed a colony of inbred C57BU6J-CD5'- 

mev/mev mice. Spleen cell lysates from C57BU6J-CD5-I-mev/mev and C57BU6J-mev/mev 

mice were utilized in the a-phosphotyrosine western blots shown in Figure 3.1 1. This 

experiment mirrored what was seen in extensive western blotting studies using B6; 129- 

CD5-I- mev/mev mice and B6;129-mev/mev mice. We are currently in the process of 

expanding our colony of C57BU6J-CD5'-mev/mev mice. With these mice, we will re- 

examine the imrnunopathologic changes observed in our previous studies using B6;129 

mice, as well as continue our investigation into the signaling alterations suggested by our 

reported western blotting results. Confirmation of the role of CD5 in immunopathologic 

changes in mev/mev mice using inbred C57BU6J-CD5-I-mev/mev mice will mitigate the 

complications of variability associated with background modifying genes and 

polymorphic diversity. 
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Chapter 4 

GENERATION OF C57BLI6J MICE CARRYING A TRANSGENE FOR 

MACROPHAGE SPECIFIC EXPRESSION OF DOMINANT NEGATIVE SHP-1 

(C453S) 

Introduction 

The protein tyrosine phosphatase SHP-1, encoded by the hematopoietic cell 

phosphatase (Hcph) gene in mice (256,257), is a negative regulator of signaling through 

a number of hematopoietic growth factor receptors (258,276,280). Much of the 

knowledge of the function of SHP-1 has been gained through the study of motheaten and 

viable motheaten mice. As previously discussed, mice homozygous for either of these 

two recessive mutations exhibit severe immunodeficiency and autoimmunity, and die at 

an early age from inflammatory lesions, encompassing accumulations of macrophages 

and neutrophils in the lungs and elsewhere (250-253). These mice have many cellular 

abnormalities, including an increase in myelopoiesis (250,281) and multiple defects in 

lymphocyte development and function (282-285). 

One of the challenges in the study of SHP-1 using motheaten mice has been 

discerning the cell autonomous functional defects caused by the absence of SHP-1 from 

the secondary effects of macrophages and neutrophils resulting in disregulation of other 

cell populations. Previous attempts in our lab to transgenically rescue SHP- 1 expression 

in specific cell populations in motheaten mice have been constrained by findings that 

cells overexpressing SHP-1 in these transgenic animals have a selective disadvantage in 

proliferation compared with the dysregulated cell populations that lack functional SHP-1 
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protein. Conversely, transgenic mice expressing a dominant negative or catalytically 

inactive form of SHP-1 under the control of cell specific promoters have been used 

successfully to study the effects of the absence of SHP-1 activity in vitro on individual 

cell types (358,359). 

Both me/me and mev/mev mice exhibit a marked expansion in numbers of 

monomyeloid cells. The importance of the SHP-1 phosphatase in regulating myeloid 

signaling pathways is evidenced by the severe inflammatory condition characteristic of 

motheaten mice. In order to dssect the cell autonomous defects caused by the lack of 

SHP-1 in macrophages, as well as to observe the effects of dysregulated macrophage 

populations on lymphoid and other myeloid cell populations, we created a mouse 

transgenic for macrophage-specific expression of a dominant negative form of SHP-1. 

SHP-1 mutant C453S cDNA has been used previously to produce a dominant 

negative protein in transgenic studies (358-360). The basis of this catalytically inactive 

dominant negative mutant was the identification of an essential cysteine residue at 

position 453 within the catalytic domain of SHP-1 (361). This essential cysteine, when 

mutated to a serine (Figure 4. I), results in a expression of a protein that can be recruited 

through its SH2 domains to imrnunoreceptor tyrosine-based inhibitory motifs (ITIMS), 

but has defective phosphatase catalytic activity. Binding of this inactive protein to SH2 

domain docking sites and substrates effectively blocks recruitment of endogenous wild- 

type SHP-1 (361), resulting in inhibition of SHP-1 function. 
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NH2 - - COOH 

Figure 4.1. The dominant negative SHP-1 mutation C453S. The G + C transversion 

changes the essential catalytic cysteine (TCG), to a serine (TCC), inhibiting the 

phosphatase catalytic activity of the SHP-1 protein. This catalytically inactive form of 

SHP-1 competes for binding sites with wild type SHP-1, effectively reducing the activity 

of the wild type protein. 

To Qrect expression of the SHP-1 C453S mutant to macrophages, the promoter 

for c-fms was used. The c-fms gene encodes the cell surface receptor for macrophage 

colony stimulating factor (CSF-1) (362, 363). CSF-1 is a cytolune required for the 

proliferation and survival of cells in the mononuclear phagocyte lineage. Expression of 

the c-fms encoded CSF-1 receptor (CSF-1R) is regulated by tissue specific promoters 

(364). Expression occurs on macrophages as well as in the placenta during gestation. 

The promoter used in these studies induces macrophage specific expression of CSF-1R 
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Materials and Methods 

Construction of SHP-1 dominant negative transgene for expression in macrophages. 

The pBluescript plasmid containing wild-type SHP-1 cDNA with a KT3 epitope 

tag and human growth hormone (hGH) poly A sequence driven by the CDl l b  promoter 

was a gift from Dr. Taolin Yi (Cleveland Clinic Foundation, Cleveland, OH). The 

macrophage specific c-fms (CSF-1R) promoter, (365) (in pBluescript) was a gift from Dr. 

Alessandra D'Azzo (St. Jude Children's Research Hospital, Memphis, TN). The SHP-1- 

KT3-hGH segment of the SHP-1 construct was excised using EcoH and was subcloned 

into a p138 plasmid linearized with EcoRZ. The c-fms promoter was excised from pBS 

with SpeZ and EagZ and ligated into the p138 plasmid containing the SHP-1-KT3-hGH 

construct, which was linearized with XbaZ and NotZ. The QuikChange Site-directed 

mutagenesis kit (Stratagene) was used to create a G to C transversion which changed the 

essential catalytic cysteine to serine, producing a construct that will express a putative 

dominant negative SHP-1 protein (359). Mutagenesis was performed according to 

manufacturers instructions using the following primers: (5'-CCG ATG CCA GCG CTC 

GAA TGC ACA ATG ATG G-3') and (5'-CCA TCA TTG TGC ATT CCA GCG CTG 

GCA TCG G-3'). 

Transgenic mice 

Transgenic C57BU6J mice were generated by standard methods by The Jackson 

Laboratory's microinjection service. Potential founders were screened for the transgene 

by PCR using primers specific for the second intron of the Hcph sequence (5'-TCC CTG 

GGA GCT TCC TGG CTC-3' and 5'-GGT GGG GTC CGA GCA GTT CAG-3'). 
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Amplification with the endogenous SHP-1 gene yields a product of 494 bp, while 

amplification with transgenic SHP- 1 yields a product of 25 1 bp. Presence of the 

transgene was confirmed using primers for human growth hormone (5'-CAT CCC TGT 

GAC CCC TCC-3' and 5'-CTC CAA ACC ACC CCC CTC-3'). 

Hematoloy 

Blood was collected from the retro-orbital sinus with EDTA coated capillary 

tubes and placed directly into Isoton I1 diluent (Coulter). Hematologic values were 

determined using the ADVIA 120 hematology system (Bayer Corp, Tanytown, NY). 

Control C57BU6J mice were age and sex matched with each SHP-1 C453S transgenic 

animal tested. 

Culture of bone marrow macrophages 

To expand bone marrow macrophage populations for analysis, bone marrow plugs 

from femurs and tibias of transgenic and wild type mice were harvested by extrusion with 

cold HBSS (Sigma). Marrow plugs were dsrupted by passage through a 25g needle. 

The resulting single cell suspensions were washed 2x in sterile HBSS, counted with a 

model ZBI Coulter counter. Cells were resuspended in complete media (RPMI-1640; 

Sigma, containing 2 rnM L-glutamine, 10% FCS, 100 Ulml penicillin and 100 pglml 

streptomycin and 50 pM 2-P-mercaptoethanol) containing 500 unitslml recombinant 

human (rHu) CSF-1 (Cetus). A total volume of 5 ml CSF-1 supplemented medium 

containing lo6 cellslml was added to 25 cm2 tissue culture flasks. Cultures were 

incubated at 37°C in 5% CO, for 7 days with periodic changes of media, maintaining the 
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appropriate CSF-1 concentrations. Cells were lysed in the flask for western blotting as 

described. 

Irnrnunoblotting 

Cultured cells were lysed for 30 minutes at 4°C in cold lysis buffer (50 mM Tris, 

pH 8.2, 150 mM NaCl, 1 % (Octylphenoxy)polyethoxyethanol (Igepal CA-630; Sigma), 

plus 1 tablet Complete, Mini Protease Inhibitor Cocktail Tablet w/EDTA (Roche 

Molecular Biochemicals) I 10 ml buffer. Cell lysates were clarified by centrifuging for 

20 min at 10,000g at 4" C. Protein levels were measures using the DC Protein Assay 

(Bio-Rad, Hercules, CA). 20 pg of each sample was resolved in a 12 % SDS-PAGE gel 

and transferred to a PVDF membrane (Millipore, Bedford, MA). The membranes were 

blocked in 5% dry milk overnight at 4" C, then incubated with rabbit anti-mouse SHP-1 

for 1-2 hours at room temp, with shaking. Membranes were then washed 3 X 5 min with 

TBS-T (TBS ~10 .05% Tween 20), incubated with HRP conjugated goat anti-rabbit ~ a b ~  

at RT for 30 - 60 min with shaking, then washed 5 x 5 min in TBS-T. Specific antibody 

signals were detected using an enhanced chemiluminescence kit (ECLp'"', Amersham 

Pharrnacia Biotech, Uppsala, Sweden). 

Results and Discussion 

The transgene was constructed as described (Figure 4.2). Sequencing from the 

carboxy terminal end of SHP-1 through to the hGH poly-A sequence revealed an error in 

the original construction of the CDl lb1SHP-1-KT31hGH plasmid. 
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Figure 4.2. Construction of SHP-1 C453S transgene. Murine SHP-1-KT31hGH poly A 

was excised from pBluescript with EcoRI and cloned into p138, linearized with EcoRI. 

The CSF-1R promoter was excised from pBluescript with SpeI and EagI and was cloned 

into the p138 plasmid containing the SHP-1-KT3-hGH construct, which had been 

linearized with XbaI and NotI. Mutagenesis was performed on the final construct to 

change the essential catalytic cysteine to a serine (see Figure 4.1). The resulting 

transgene should express a dominant negative SHP-1 protein under control of the 

macrophage-specific promoter of CSF1-R (c-hs). 
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A fragment of SHP-1 consisting of base pairs 88 - 266 of the wild type protein was 

present at the carboxyl terminal end of the SHP-1 transgene, apparently in place of the 

KT3 epitope tag, since a KT3 sequence was not found. However, the full cochng 

sequence of the SHP-1 gene was present. Absence of the KT3 tag raises a number of 

challenges when trying to identify the transgenic protein in expression studies. Studies 

using dominant negative proteins that retain structural similarity to their wild type 

counterparts rely on an epitope tag to identify the transgenic protein by immunoblotting 

(359,360,366). The SHP-1 C453S transgenic protein differs from the wild type SHP-1 

protein by only one amino acid, and the c-fms promoter drives expression of the 

transgene in cells that normally exhibit significant expression of endogenous SHP-1. 

Without an epitope tag, demonstration of the successful expression of the transgene will 

rely on an increase in SHP-1 expression levels in macrophages, altered phosphorylation 

on tyrosine residues of SHP-1 substrates or functional studies. 

Transgenic mice were made by conventional methods, and founders were 

identified by PCR as described (Figure 4.3). From the first 34 possible founders, 4 

females were identified as transgenic. Of the following 71 possible founders, none tested 

positive for the transgene. A new batch of transgene DNA was submitted to the 

institutional microinjection service for generation of additional transgenic mice. The 4 

founders were mated to C57BU6J males. One female founder died unexpectedly at 12 

weeks of age, having produced no offspring. Founder #6 and founder #25 have produced 

offspring. The first litter of each of these founders contained transgenic mice. All 

existing transgenic mice, both founders and offspring from first litters, were bled from 

the retro-orbital sinus for peripheral blood analysis. 
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Figure 4.3. PCR typing of SHP-1 C453S transgenic founders. Lane numbers correspond 

to both upper and lower panels. A) Typing using primers for SHP-1. Lanes 6 and 8 

show the intense 251 bp band indicating presence of the transgene. Lane 19: dH20, lane 

20: wild type DNA control. Amplification of a 251 bp band in wild type mice was 

unexpected, so transgene presence was confirmed by further typing with primers for hGH 

poly-A sequence. B) Typing with primers for hGH results in amplification of a 151 bp 

band in mice carrying the SHP-1 C453S trangene (Lanes 6 and 8). 

If the transgene was functional, and the SHP-1 C453S protein had a true dominant 

negative effect, one would expect to detect an increase in percentages of myeloid lineage 

cells in peripheral blood of transgenic mice. However, peripheral blood counts of 

transgenic and non-transgenic mice were not significantly different (Figure 4.4). There 
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was no significant variation amongst mice carrying the transgene, so data from all 

transgene positive mice were pooled for comparison to wild type. 

" 
Neutrophiis Lymphocytes Monocytes Eosinophils 

Figure 4.4. Peripheral blood analysis of SHP-1 C453S transgenic mice vs. 

wild type C57BU6J mice. (n = 8) 

Macrophages containing numerous functional copies of the SHP- 1 C453S 

transgene should produce greater total levels of SHP-1 protein than wild type cells. To 

examine SHP-1 expression levels in the cell population to which transgene expression 

was directed, one transgenic offspring from founder #25 was sacrificed. Bone marrow 

was collected from femurs and tibias and cultured with CSF-1 to expand bone marrow 

macrophage populations. Analysis of these cultured cells by western blotting showed no 

increase in SHP-1 expression between SHP-1 C453S and wild type cells (Figure 4.5). 

These data suggest that the transgene is not functional in bone marrow macrophages 

grown in the presence of CSF-1. However, without an epitope tag to distinguish between 

SHP- 1 C453S and endogenous SHP- 1, it is possible that the transgene is being expressed, 
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but does not result in a detectable increase in SHP-1 protein. However, there was also no 

detectable difference in tyrosine phosphorylation levels in SHP-1 C453S bone marrow 

macrophages versus wild type (Figure 4.6). This suggests that the presence of the 

transgene does not result in alteration of SHP-1 phosphatase function. 

Figure 4.5. Anti-SHP-1 western blot on bone marrow macrophage and spleen cell 

lysates from a SHP-1 C453S transgenic and control mouse. Lanes 1 & 2 contain lysates 

from bone marrow macrophages, lanes 3 & 4 contain total spleen lysates. Lanes 1 & 3 

are SHP- 1 C453S Tgn, lanes 2 & 4 are wild type. 2 pg of proteidlane. 
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Figure 4.6. Anti-ptyr western blot on bone marrow macrophages of A) SHP-1 C453S 

transgenic mice and B) C57BU6J control mice. 

Preliminary studies of mice carrying a transgene for macrophage-specific SHP-1 

C453S expression do not confirm a functional effect of the transgene. Our collaborator 

(Dr. Taolin Yi) has recently developed a novel, more effective dominant negative SHP-1 

mutant. Although we will continue to expand the current founder colonies of SHP-1 

C453S, we will investigate the efficacy of this new dominant negative SHP-1 mutant for 

use in any future studies using a transgenic approach to alter SHP-1 function in a cell 

specific fashion. 
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Chapter 5 

ESTABLISHMENT AND CHARACTERIZATION OF A NEW CELL LINE 

(MOS- J) FROM A SPONTANEOUS C57BLl6J MOUSE OSTEOSARCOMA.~ 

Abstract 

This chapter describes the establishment and characterization of an osteoblast-like 

cell line derived from a spontaneously occurring chondroblastic osteosarcoma in a 

C57BLJ6J mouse. The tumor line, MOS-J, forms solid tumors when injected 

intramuscularly into irnrnunocompetent syngeneic hosts, mimicking endochondral bone 

development. These transplantable tumors have the capacity to destroy and invade 

existing bone, and invade vessels in close proximity to the tumor. In culture, MOS-J 

cells form layers of pleomorphic cells with high mitotic activity. These cells have 

marked alkaline phosphatase enzyme activity and form calcified foci in vitro that stain 

with alizarin red. MOS-J cells also promote osteoclast development from normal bone 

marrow. These characteristics indicate the potential utility of the MOS-J osteosarcoma 

cell line as a model for the studies of human osteosarcoma and normal bone biology. 

Introduction 

In an effort to substantiate the role of SHP-1 as a tumor suppressor gene, our lab 

maintains aging stocks of +/me and +/mev mice, monitoring tumor incidence, and 

classifying and collecting samples of each neoplasm for analysis. A 25-month-old 

female +/mev mouse that was part of this study developed a firm, palpable mass in the 
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right distal femur. The mass was identified histologically as a chondroblastic 

osteosarcoma, a rare tumor in mice (367,368). Preliminary investigation of this tumor 

did not support the hypothesis that it resulted from loss of SHP-1 heterozygosity. 

However, the cell line derived from this tumor may have significant value as a model of 

human osteosarcoma. 

Osteosarcoma is a malignancy of bone that commonly affects adolescents and 

young adults, accounting for approximately 20% of all primary malignant neoplasms of 

the bone in humans (369). Treatment often includes amputation of the affected area and 

adjuvant chemotherapy treatment. Despite aggressive surgical and medical therapies, 5- 

year survival rates range from only 10 to 60 %. 

Cell lines provide an important resource for investigating the pathophysiology of 

many types of cancers. These lines can be used for in vitro study of the biological 

behavior of cancer cells, including the basic mechanisms of oncogenesis, expression of 

growth factors and receptors and assessment of cell sensitivity to anti-neoplastic agents. 

Mouse cancer cell lines provide a valuable tool for in vivo study of in situ and metastatic 

tumor cell behavior following injection of the cells into immunocompetent syngeneic 

hosts or into immunodeficient mice. 

Here we describe an osteosarcoma cell line derived from a primary spontaneous 

mouse chondroblastic osteosarcoma (osteochondrosarcoma). This cell line has many 

characteristics of osteoblast-like cells, and may be a useful model for the study of both 

osteosarcoma and normal bone biology, both in vivo and in vitro. 

Modified from: Joliat MJ, Lyons BL, Umeda S, Lynes MA, Shultz LD. Establishment and 
characterization of a new cell line (MOS-J) from a spontaneous C57BU6J mouse osteosarcoma. In prep. 



www.manaraa.com

Materials and Methods 

Source of cancer tissue 

The MOS-J (Mouse Qsteogenic Sarcoma - Jackson Laboratory) cell line was 

derived from a spontaneous chondroblastic osteosarcoma that arose in the right distal 

femur of a 757-day old female C57BU6J mouse heterozygous for the viable motheaten 

(Hcph"', hereafter abbreviated me3 mutation. The mouse was euthanized by CO, 

asphyxiation and the lesion was removed for examination. Minced pieces of the tumor 

were placed subcutaneously into ~ ~ ~ ~ l c ~ ~ ~ - ~ r k d c S ~ ~ % r k d c " ~ ~ ~  (hereafter called scid) 

mice. Additionally, portions of the tumor were disaggregated into a single cell 

suspension and cultured to establish the cell line. Other sections of the tumor were fixed 

for histological analysis as described below. 

Histopathology 

Tissues were fixed and demineralized in Bouin7s solution, or fixed in Fekete7s 

acid alcohol formalin and demineralized using Cal-EX decalcifying solution (Fisher 

Scientific, Fair Lawn, NJ). Tissues were then embedded in paraffin, sectioned at 6 pm 

and stained with Mayer's hematoxylin and eosin (H&E) for histological examination. 

Irnmunohistochemistry was carried out on serial tumor sections using mouse anti-alpha- 

smooth muscle actin (Sigma) for identification of vessel wall invaded by tumor cells. 

Non-specific staining was blocked on deparaffinized sections with peroxidase blocking 

reagent (DAKO). Tissue'sections were then incubated in primary antibody for 1 hour at 

room temperature in a humidified chamber, washed 3 x 5 minutes in PBS and then 

incubated with biotinylated secondary antibody against mouse IgG2a isotype for an 
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additional hour. After another three 5-minute washes in PBS, tissues were incubated in 

avididhorseradish-peroxidase conjugate for 45 min, followed by an additional trio of 5- 

minute washes. Tissues were then incubated in diaminobenzidine (DAB) for 5 minutes at 

room temperature and washed in tap water for 5 to 15 min. Tissues were counterstained 

with hematoxylin, dehydrated in graded ethanol, cleared in xylene, and coverslipped with 

Permount (Fisher Scientific, Pittsburgh, PA). Processing of tissues was conducted by 

The Jackson Laboratory's Biological Imaging service. 

Establishment of the MOS-J cell line 

Immediately after removal of the original neoplasm, normal muscle, vascular 

tissue, fascia, and fat were removed from the specimen and discarded. Fractions of the 

tumor were minced and dispersed in complete media (cWMI: WMI-1640 (Sigma, St. 

Louis, MO) containing 2 mM L-glutamine, 10% FCS, 100 U/ml penicillin and 100 pglml 

streptomycin and 50 pM 2-P-mercaptoethanol) in a 50 ml centrifuge tube. The resulting 

single cell suspension was seeded in 25 cm2 tissue culture flasks and incubated at 37' C 

in humidified 5% CO,. Culture medium was replaced twice a week until cells reached 

confluence. Cultures were exposed to trypsin-EDTA to release adherent cells from the 

surface of the flask, then were washed with fresh medium and subcultured at a density of 

2 x lo5 cellslml under similar culture conditions. 

Growth rate 

To determine the rate of cell growth, cells were plated at 5 x lo3 cells/cm2 in 35 

mm 6-well plates in minimum essential media containing 10% FBS. Each well had a 
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growth area of 9.4 cm2. At 2 ,3 ,4 ,5 ,6 ,  and 7 days of incubation, cells were trypsinized 

and counted with a hemacytometer. Values are expressed as the mean number of cells f 

SEM from six wells. 

Cell culture characteristics 

Cells from the parental line were maintained in cRPMI. For studies of the 

characteristics of cells in culture, cells were seeded in a culture dish containing several 

glass coverslips. At 2, 5 and 9 days, a single coverslip was removed from the culture. 

Cells were fixed in methanol for 15 minutes, then stained with H&E, dehydrated through 

a series of ethanols to zylene and mounted on a slide with Permount (Fisher). 

Alkaline ~hosphatase detection in situ 

Cells were plated into 6-well culture dishes (Corning Costar, Corning, NY) at 5 x 

105cells per ml in a total volume of 6 rnl complete media per well. They were 

maintained in a humidified, 5% CO, incubator at 37' C for 72 hours. NM 3T3 cells were 

plated simultaneously and used as a negative control. After 72 hours at 37' C, the culture 

dishes were placed on ice. The medium was removed and the cells were washed twice in 

cold PBS. Cells were then fixed in the dishes for 20 min on ice with methanol. The 

methanol was removed and cells were washed twice in PBS. A BCIPINBT (5-bromo-4- 

chloro-3-indolyl phosphatelnitro blue tetrazolium) substrate kit for alkaline phosphatase 

was used (Zymed, San Francisco, CA) to detect alkaline phosphatase activity. The 

substrate solution was prepared as directed by the manufacturer and 5 ml was added to 

each well. Color development was allowed to occur for 5 - 10 minutes at room 
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temperature, after which the substrate was removed and the cells were washed twice in 

distilled H,O. 

Alizarin red staining 

Cells were grown on coverslips in a culture dish for 30 days in cRPMI. Presence 

of calcium was assessed in cultured cells using a Dahl's method for calcium (370), with 

modifications. Briefly, cells were fixed for 15 min in methanol, then air-dried. Cells 

were then incubated for 10 minutes in a solution of 1% aqueous alizarin red, which had 

been adjusted to a pH of 6.4 with 0.1% ammonium hydroxide. Cells were rinsed three 

times in dH,O, counterstained in 0.2% light green for 15 seconds, and rinsed briefly in 

dH,O. Finally, cells were dehydrated through a graded series of alcohols to xylene and 

mounted using Perrnount (Fisher). 

Support of osteoclastogenesis 

C57BL16J bone marrow cells (2.5 x 104/cm2) were seeded simultaneously with 

tumor cells (1 x 104/cm2) in 8 well LabTek chambers and 6 well plates, in RPMI-1640 

(Sigma) containing 10% FCS, 2 mM L-glutamine, 100 U/ml penicillin, 100 p g h l  

streptomycin and 50 pM 2-P-mercaptoethanol, supplemented with 10 nM/L 1-a-25 

dihydroxy (OH), Vitamin D, (Calbiochem, San Diego, CA). Cells were grown both with 

and without 500 U/ml recombinant human (RHu) CSF-1 (Cetus, Emeryville, CA) added 

to the medium to promote osteoclast growth. As a control, MOS-J cells and bone 

marrow cells were each grown alone with CSF-1. Cells were stained for tartrate resistant 

acid phosphatase (TRAP) using a leukocyte acid phosphatase kit (Sigma). 
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Oncogenicity in mice 

Five male mice of each of the three strains (C57BL/6J, C57BU6J-Rag-I-'-, and 

N O D - R U ~ - ~ - ~ )  were injected in the quadriceps muscle with cultured tumor cells (1.3 x lo5 

cellsl0.lml sterile PBS). Growth was assessed by radiographic examination at 2 and 6 

weeks post inoculation. At seven weeks after injection, the primary mass was removed 

from two mice in each group by aseptic surgical amputation of the affected limb, as 

described below (Dr. B. Lyons). The remaining mice of each strain were euthanized and 

necropsied. Grossly evident nodules and selected organs were prepared for histological 

examination as previously described. Mice surviving amputation were assessed by 

radiographic examination for evidence of recurrence or metastasis. 

5 

Ultrastructural studies were performed on specimens obtained from transplanted 

neoplasms in BALBlcByJ-scid mice. Neoplasms were fixed in 2% glutaraldehyde in 0.1 

M cacodylate buffer for 60 minutes. Samples were rinsed in 0.1 M cacodylate buffer for 

15 minutes, then post-fixed in 1% osmium tetroxide in 0.1 M cacodylate buffer for 15 

minutes, dehydrated in a graded series of ethanols (50 - loo%), then passed through 

polypropylene oxide as the intermediate solvent. Samples were re-embedded in 1:2 

propylene oxide 1 Epon mixture for 4 hours, exposed to a 1:3 propylene oxide 1 Epon 

mixture, then transferred to a conical Beem capsule. One hour later, the cells were placed 

in a dessicator and incubated overnight, then polymerized in a 60' C oven for 48 hours. 

One to two mm sections were cut and stained with Toluidine blue and ultrathin (70 - 

90nm) sections prepared from selected areas were mounted on copper grids. The sections 
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were stained with aqueous uranyl acetate and Reynold's lead citrate and were examined 

using a transmission electron microscope (371). 

Amputation of affected limb 

Coxofemoral disarticulation (372) was performed to amputate the affected leg. 

Mice were anesthetized using Avertin (250 mgkg body weight). Muscle and skin layers 

were closed separately with absorbable sutures and the mice were kept in a quiet, heated 

environment and monitored until ambulatory. This procedure was conducted by a 

licensed veterinary surgeon, (B. Lyons, D.V.M.). The protocol was approved by the 

institutional Animal Care and Use Committee (ACUC). 

Results 

Histopathology of the original tumor 

The original tumor occurred spontaneously in the right &stal femur of a 25- 

month-old C57BU6J +/mev female mouse. The mass was lobular in shape, firm and pale 

white in color. Histological evaluation showed variably sized bundles and streams of 

closely packed undifferentiated spindled cells with discernable cell borders, containing 

numerous mitotic figures. These cells contained a moderate quantity of basophilic, finely 

fibrilar cytoplasm. Nuclei were pleomorphic, oval to elongate, containing course and 

finely granular heterochromatin. Scattered throughout the mass were areas of irregular, 

often interconnecting trabeculae of osteoid, generally contiguous with large areas of well- 

differentiated hyalin cartilage. Numerous multi-nucleated giant cells resembling 

osteoclasts were observed within the trabecular regions of the neoplasm. This tumor was 
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interpreted to be a well-differentiated osteochondrosarcoma. No metastases were 

observed in lung, liver or other organs. 

Cell culture characteristics 

Growth rate and morphology of MOS-J cells were examined in culture. Figure 

5.1 shows the growth rate of MOS-J cells in MEM withlo% FBS. Under growth assay 

conditions in 9.4 cm2 wells, cells began to detach after 7 days. However, in 75 cm2 

culture flasks, cultures have been maintained successfully without passage for > 2 months 

with bi-weekly me&a changes. Cultured MOS-J cells form layers of large, closely- 

spaced, polygonal and elongated cells with random orientation, containing pleomorphic 

nuclei and abundant cytoplasm pigure 5.2). Multiple mitotic figures are present as well 

as individual cell necrosis characterized by pyknotic and karyorrhectic debris. 

2001 Growth rate 

Day 

Figure 5.1. Growth rate of MOS-J cells in culture. 
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Alkaline phosphatase activity 

Alkaline phosphatase activity is a characteristic feature of osteogenic 

differentiation of osteoblast-like cells (373). MOS-J cells showed marked alkaline 

phosphatase activity by enzyme cytochemistry (Figure 5.3 A). Negative control NIH 3T3 

cells under similar conditions showed no activity (data not shown). 

Alizarin red staining 

Alizarin red detects calcium deposition, which is a hallmark of ossification. Cells grown 

in culture contained numerous foci that stained positive for alizarin red (Figure 5.3 B, C). 

In the areas of darkest red staining, cells showed a circular pattern of aggregation. 

Osteoclast growth assay 

MOS-J cells promoted osteoclast growth in normal bone marrow cells (Figure 5.3 

D). TRAP-positive cells were present in cultures containing MOS-J cells with normal 

bone marrow cells. No quantifiable difference was seen in numbers of TRAP-positive 

cells in cultures grown with or without CSF-1. No TRAP positive cells were seen in 

CSF-1 supplemented cultures of tumor cells alone or bone marrow cells alone (Figure 5.3 

E, F). 
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Oncogenici ty in vivo 

MOS-J cells form rapidly growing tumors when injected IM into 

immunodeficient mice as well as in immunocompetent syngeneic hosts. At two weeks 

post injection, radiodense lesions were visible in the muscle of all mice in the vicinity of 

injection. In some cases, osteolysis was evident in the existing bone adjacent to the 

lesion (Figure 5.4 B). At 7 weeks post injection, lesions were prominent, radiodense, and 

involved the bulk of the adjacent bone (Figure 5.4 C). In all cases, the injection 

ultimately resulted in one visible, palpable mass that was firm and occasionally multi- 

lobated. 

Histologically, the neoplasms were generally fairly well demarcated and non- 

encapsulated, with cells on the perimeter resembling periosteum. Spindle-shaped cells 

containing areas of osteoid trabeculae were interspersed with cartilaginous matrix (Figure 

5.5 A). Basophilic chondroblasts were visible in areas of cartilage production. Regions 

of well-mineralized neoplastic bone as well as reactive normal bone were present (Figure 

5.5 A, B). Lytic lesions were evident in existing bone (Figure 5.5 C). With IM injection, 

there was no evidence of metastasis, radiographically or histologically, even after 

amputation of the affected limb. However, there were multiple sites within indwidual 

tumors where neoplastic cells were seen in close proximity to or even penetrating or 

obliterating the vessel walls and growing into the lumen of vessels (Figure 5.5 D, E, F). 

Ultrastructural findmgs of transplanted tumors 

Tumor cells include large, irregularly shaped nuclei containing marginated 

chromatin and prominent nucleoli (Figure 5.6). The cytoplasm contained abundant rough 
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endoplasmic reticulum (rER) and mitochondria. In some areas of the tumor, irregular 

electron dense granules resembling mineral deposits formed a halo-like pattern around 

the nucleus in the cytoplasm (Figure 5.6 A). Other areas of the tumor were characterized 

by an abundance of extracellular collagen fibrils (Figure 5.6 B). 
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Discussion 

The MOS-J cell line was derived from a spontaneous chondroblastic 

osteosarcoma in a C57BL/6J +/mev mouse. The mev mutation disrupts the structural gene 

(Hcph) encoding SHP-1 protein tyrosine phosphatase, also referred to as hematopoietic 

cell phosphatase. The tumor derived MOS-J cell line was first examined for loss of 

heterozygosity of the wild type Hcph gene as part of a study of the putative role of Hcph 

as a tumor suppressor gene (254). If SHP-1 does indeed function as a tumor supressor 

gene, increased tumor rates would also be expected in heterozygous +/me or +/mev mice. 

Tumors would be expected to arise from cell types in which SHP-1 is known to function 

as a negative regulator, such as T, B, or myeloid cells, and these neoplastic cells would be 

expected to have deficient SHP-1 expression. The discovery of a firm tumor associated 

with the bone was unexpected in this study and was of particular interest. However, 

preliminary studies do not support the possibility that this tumor was caused by loss of 

expression of the SHP-1 protein (data not shown). Moreover, the cell line derived from 

this tumor has an osteoblast-like phenotype, and it has been shown that normal 

osteoblasts do not express SHP-1 (374). Nonetheless, many characteristics of the MOS-J 

cell line suggest that it may have utility in the study of bone biology as well as 

osteosarcoma biology and treatment. 

The MOS-J cell line has an aggressive phenotype characterized by unrestricted 

growth, but accompanied by numerous functional and histocytological features of normal 

osteoblasts. Alkaline phosphatase enzyme activity, ossification both in vitro and in vivo, 

and ability to promote osteoclast development in culture are all indicative of osteoblast- 

like function by the MOS-J tumor cells. These transplanted tumor cells mimic the 
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process of endochondral ossification in vivo. Presence of basophilic chondroblasts and 

cartilaginous matrix within the tumor is similar to the histological variant of the human 

conventional osteosarcoma described as chondroblastic osteosarcoma. 

The derivation of this cell line from a spontaneous tumor in a C57BU6J mouse is 

a particular advantage over osteosarcoma cell lines derived from other species, less 

common mouse strains, or mice in which oncogenesis was promoted by insertion of an 

oncogenic transgene. These cell lines are often limited to transplantation into 

immunocompromised hosts. Certain transgenes that induce oncogenesis, such as the 

SV40 large-T antigen, can be immunogenic (375,376). Transplantation of cells derived 

from transgene induced tumors can result in tumor rejection by immunocompetent 

syngeneic hosts. Conversely, MOS-J cells may be transplanted, without rejection, into 

immunocompetent C57BU6J mice. Many strains of mice carrying targeted mutations or 

transgenes related to bone and cancer biology are maintained on the C57BU6J 

background (see (265)). Study of the behavior of MOS-J cells transplanted into mice 

bearing one or more of these mutations may provide insight into important biological 

interactions involved in tumor growth and metastasis or bone development and 

maintenance. 

MOS-J cells have many histocytological features of normal osteoblasts. They 

support osteoclast development when cultured with normal bone marrow, suggesting that 

these cells may be used in the study of intercellular interactions or the investigation of 

factors produced by osteoblasts that control osteoclast dfferentiation and activation. 

CSF-1 is essential for normal osteoclast development (377). The observation that MOS-J 

cells promote osteoclast formation in vitro without the addition of exogenous CSF-1 
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suggests that the MOS-J tumor cells, like normal osteoblasts (378), secrete CSF-1. 

Experiments using other osteosarcoma cell lines have demonstrated that normal 

osteoblasts secrete Interleukin- 11 (IT.,- 11) (379), and that hepatocyte growth factor (HGF) 

can induce secretion of IL-11 from osteoblast-like cells (380). IL-11 stimulates 

TRANCE (TNF-related activation-induced cytokine) expression on osteoblasts (38 I), 

which is crucial to the stimulation of osteoclast differentiation and bone resorption (375). 

The MOS-J cell line may be a valuable tool in further understanding the intricate 

processes involved in skeletal development and restructuring. 

Although evidence suggests that the neoplastic characteristics of MOS-J cells are 

not associated with mutations in SHP-1, further molecular characterization of the MOS-J 

cell line has not been conducted. There are a large number of genetic mutations known 

to be associated with osteosarcoma in humans (for review, see (382)). Investigation into 

the genetic abnormalities existing in this line may identify novel mutations that lead to 

the development of osteosarcoma, or may reveal mutations already known to be 

associated with human osteosarcoma, providing a direct model for the study tumor 

development. 

Transplanted MOS-J cells have the capacity to infiltrate adjacent bone following 

intra-muscular injection, and appear to invade vessels at multiple sites within transplanted 

tumors. However, metastases have not been found in other organs. It has recently been 

shown that intra-tibia1 injection of the rat osteosarcoma cell line UMR 106-01 into 

athymic mice can result in lung metastasis where alternate methods of injection using the 

same cell line have failed to produce metastasis (383). A number of genetic variations 

have been associated with metastatic potential in an osteosarcoma model system (384). 
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Isolation of a metastatic variant of MOS-J or development of an injection system that 

promotes metastasis of the transplanted tumor would enhance the value of this cell line 

for the study of genetic alterations associated with metastasis. However, we have 

assessed the metastatic potential of MOS-J cells following intra-tibia1 injection, and have 

found no evidence of metastasis. Despite the fact that a metastatic variant of MOS-J has 

not yet been identified, MOS-J cells may be valuable in comparative gene expression 

studies with osteosarcoma models that do show evidence of metastasis, such as the 

histologically and behaviorally distinct tumors that arise spontaneously in SV40 Tag 

transgenic mice (385,386). 
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CONCLUSION 

Mice with spontaneous genetic mutations have provided crucial tools with which 

to develop our knowledge of normal and pathological biological processes. Studies using 

mice carrying the motheaten or viable motheaten mutations have advanced the 

understanding of numerous signaling pathways in the immune and hematopoietic 

systems. Recently, SHP-1 has received significant attention for its role in development 

of human cancers (261,262,264,387) and for its contribution to other diseases of 

hematological and immunological dysregulation (263,388). Continued investigation into 

the extensive signaling capacities of SHP-1 may lead to further insights into these 

diseases and into the complex physiological processes involved in maintaining 

homeostasis of the immune system. 
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